Formules - ‫1 כפל מקוצר‬(a ± b = a ± 2ab b 2 2 2 a 2 − b 2 =(a b(a − b(a ± b 3 = a 3 ± 3a 2 b 3ab 2 ± b 3 a 3 ± b 3 =(a ±

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ‫1. כפל מקוצר‬ (a ± b) = a ± 2ab + b 2 2 2 a 2 − b 2 = (a + b)(a − b) (a ± b) 3 = a 3 ± 3a 2 b + 3ab 2 ± b 3 a 3 ± b 3 = (a ± b)(a 2 µ ab + b 2 ) ‫2. חזקות ושורשים‬ m am a =m b b m a = a m −n n a a0 = 1 n a (ab) m = a m b m a m a n = a m+ n ab = n a ⋅ n b m n = n am (a m ) n = a mn 1 a −m = m a n a a n =n b b ‫3. לוגריתמים‬ log a x = b ⇔ a b = x 0 < a ≠ 1, x > 0 :‫הגדרת הלוגריתמ‬ log a ( xy ) = log a x + log a y x log a = log a x − log a y y log a x b = b ⋅ log a x log a b x = a log a x log a x = = log a x b x log b x log b a :‫מעבר בסיס‬ ‫4. משוואה ריבועית‬ ‫,0 = ‪ax 2 + bx + c‬‬ ‫0≠‪a‬‬ ‫∆ ±‪−b‬‬ ‫,‬ ‫‪2a‬‬ ‫2 שורשים‬ ‫שורש אחד‬ ‫אין שורשים )ממשיים(‬ ‫= 2 ,1‪x‬‬ ‫,‪∆ = b 2 − 4ac‬‬ ‫,0 > ∆‬ ‫,0 = ∆‬ ‫,0 < ∆‬ ‫‪b‬‬ ‫‪a‬‬ ‫− = 2 ‪x1 + x‬‬ ‫‪c‬‬ ‫‪a‬‬ ‫2‬ ‫0 > ∆ ,) 2 ‪ax + bx + c = a ( x − x1 )( x − x‬‬ ‫= 2 ‪x1 ⋅ x‬‬ ‫5. פתרון של אי- שוויונים ריבועיים‬ ‫) 1‪x 2 > x‬‬ ‫0 > ‪ax 2 + bx + c‬‬ ‫,0 > ‪(a‬‬ ‫0 < ‪ax 2 + bx + c‬‬ ‫המקרה‬ ‫הפתרו‬ ‫המקרה‬ ‫הפתרו‬ ‫0>∆‬ ‫2 ‪ x > x‬או 1‪x < x‬‬ ‫‪b‬‬ ‫−≠‪x‬‬ ‫‪2a‬‬ ‫‪ x‬לכל‬ ‫0>∆‬ ‫2 ‪x1 < x < x‬‬ ‫0=∆‬ ‫אי פתרו‬ ‫0<∆‬ ‫אי פתרו‬ ‫0=∆‬ ‫0<∆‬ ...
View Full Document

This note was uploaded on 01/26/2012 for the course IEM 1911.101.1 taught by Professor Kagnovski during the Spring '11 term at Ben-Gurion University.

Ask a homework question - tutors are online