This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: (57”,:(11‘
1. Find the general solution of 33;” — 431’ + 3y = 0. ‘
lg/ EVEHM 3 r 0 ( Ail/@Mgﬁ) (t. ‘33—; t '35:} 9E ‘3
, v; m " “/p ac
I \I; g N’ M 1 M .
#: C,£ Co‘s/4‘67 +(,€ San/1;? 2 i gt
/ at]? r“ “CH/i «‘3 ‘ M? I Ltg M427K Exam 1B Name 303mm momma NO NOTES. NO CALCULATORS. 2. For the autonomous equation 3/ 2 2y — yz, determine the equilibrium solutions, classify their stability, and sketch a few representative solutions. , / ,
r7 , y ‘5 O “A? 2*“3’ ‘42 3' C) ukk <3? 0
4C ' Vi") 993’ ‘11 a
l I , ' I \lx
‘ Q /
so \ V5 3' E21 kgmﬁtoi‘mOJ/LB SAFKWU 3 A large tank initially contains 75 lbs of salt dissolved 1n 1000 gallons of water. Pure water is pumped into the
to tank at a rate of (fig/align The well~mixed solution is pumped out at a rate of 3 gal. [min Write an IVP whose solution gives the amount of salt 1n the tank after t minutes (Don’ t solve the IVP.) am A , ‘
(‘V "J 1 \f’
. (DTA A“ w 4.4’" p ,9 \fr ”8&4“: U03}: 1000 : 31441 EB. » ,égﬁl ‘QLOB = Cli; gt+1000 )
4. One of the following DE’s 1s exact Figure out which and then solve it. ‘ M, K
A. (my+1)dm+(xy—1)dy=0 . 3, MT: Xff IW ‘/ "h l x
B sinzcosydm—sinycosxdy: 0 \n ; N 1‘ Mg mum .‘ f MK; . ,.,, >4
(:5 Dysinx+scycos:r) dw+(xsinx+1) (13;: 0 ’
WA”, M7: Sihx * xcosx NX: KPX 7 MA“ "7' Q: gvymnx +Xb3f0§>irl¥ \0 1.1»>< (\U/ (“X
W:~U\CO$K + U) XCOSXA“ (\U: \é‘i (\j: 43an +‘r‘l~ ,/ ‘x
lﬂl \— \_‘rh 7:3 )< 6“ n X /g ﬁqﬁx f .1 + (one ' ” ”‘Anyﬁtz\ \ ,‘ .
U2 :— (ﬁg/(95;!) + \{XSrWﬁl {it/(.USX #hui) / 1*” CW (2a w /Qeif 0dr. ﬂak “A ._ (puss {@161 f 9 $4 l W ' $1:on + 35“.! 0% / hw \J Y 1‘) \J «(1+ 422m A (t , 2‘ E133 '4'“:th , 0 5. Consider the‘ﬂﬂiﬁt ‘j‘ 1)y” — (t + 2)y’ + y «T O, y(3) = 2, y’ (3) = 0 and note that yl i 5: is a solution to the DE.
Find the largest interval over which a unique solution to the IVP can exist. Then use reduction ofvorden to ﬁnd a
second solution. Show that the second solution is linearly independent over your interval and then give the solution
to the IVP. ' , + \ \ Ji u \‘,
‘51: v5V \l‘: \M Mel C (“u") Y9? 3+(v\4\1\)»€(\1w.)7, L
' f ‘94 (V’r Eva/X ~‘ V";
CE ”5(5JrW‘t9VWV  (walk/Wow» Jr \JeA : o <15 "L DLV't 3‘» 4V“) ”(‘t'ldXVtHOA’ \l C (D ) _,\ f
. ‘ ,,, «r». ,2: \ , ,\j GUM ‘eﬁg \ \jf m “I
V + JrV‘ + t \J‘ Jr eély/lm/ ’25 ﬁ l ‘7" “V; ’ C W 39“ H + \5H
\\\ 4 (75/93
\ Z ,
3/9.?“ ‘
1‘ \h, \‘\%Q\{/?:
 5 A»)
W ; at (+9) , um I?» , t Xe’g’lﬁ) \
‘t {— /4\“ \{L’ e "J .L \N
{+7 __..\ i we "(’L'C “QC 3 67. \/>
,g&E€t [email protected] \ f ‘l' /’C /QC*\\(\ Lt\\ VJ L++l>$
w” — W 6.7"" ,2 6 (0( AZ 8 Jr»! L (/W
{OifngrCe/l; [leM// :27 t’\'\ \ JC 4 1an +l)\ ‘€
5) W o v ’t , J; 6340 C + ”6
x x~ ““m \ en mg ~ (w: '3 New? 8‘: ...
View
Full Document
 Fall '10
 GODDARD
 Differential Equations, Equations

Click to edit the document details