lecture_2011_10_25 - # %& '( !" $ $ ) * (...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: # %& '( !" $ $ ) * ( ) + + , .. &. / ) -( ( '( $ *, 1 (& * - ,* 1 2 Top Compression Ring ) Second Compression Ring 3 '# Oil Control Ring Rail ( , Oil Control Ring Expander (, Piston , / ) & .) 2 ( ' (4 + Rod Assembly Crank Angle θ 0 & ( 1 3 4 ) " ( 5 PISTON NOMENCLATURE 6 - *, 1 *, 1 .3 . 1 . +. *1 / . ** ,* 1 .' . , ',8 2 $ 2 *, 1 . 2 (" ) ) 2 2 *, 1 / . ** ,* 1 . .' ,9 '1* 31 ,# &. ' )&. .: * 3 3 ',8 1* 31 / ( ) . ,9 ' .3 *1 " ) ( 7 *, 1 *, 1 .1 . 1 . +. *3 / . ** ,* 1; .' < 1= ' *, 1 * 3 . 1. ,9 ' *, 1 . 41 ,9 ' *, 1. , . >* ,9 ' % /,9 * TYPES OF PISTON CROWN ? TYPES OF PISTON SKIRTS @ TYPES OF PISTON SKIRT PROFILE PISTON DESIGN ISSUES - =** /,9 *, 1* ,* ;*, 1 . < . 1 . . *, 1, . ,- ; , , 1 ' < 8 . 1 * 1 ;*, 1. < 3 1 %8 . / ' *,* 1/ . . . / * ,* 1 -= 1* 31 *. 1 .* . PISTON DYNAMICS *, 1 . ,* 1 A / , ' ,8 * ' . ,* 3 1 1 *, 1 . )' ' ' / ' ,$ 1 0 PISTON TEMPERATURE AND HEAT TRANSFER A *2 2! )$ $ $ $ ) ' (2 # ; + ) $ ( 1& , $ + () < ( ) A$ $ ) $ ) ( ( )B ( ( 5 PISTON / BLOCK TEMPERATURE AND HEAT TRANSFER (II) 6 BORE DISTORION 2 ( ) (= . $2 2 ( B )) 2 , /( $ )% ( ) A$ $ ) , (, 3( ( C ) ( ( 7 BORE DISTORION: Engine Assembly FEA Model BORE DISTORION: Post Processor and Its Outputs FEA or Measured Data Bore Distortion Post Processor Fourier Coefficients ? &. / / 0& * 1 * 1 / 9 . 1* / ' *, 1 . + 1 ,* 3 1 1 + 1 9* /1 = *, 1 ,* 1 ' D=/ ' /* / ',8 *, 1 . ' D=/ ' /* / ',8 1 ** 9 * 3 /1 = * .1 %* 1 1 , /' - ,* 1' ' D=/ = *.-.1 /* *3 ,8 * &= 3 , 1 ,8 @ . / 3 . / '( ( $2 , 6 0 a 5 4 5 6 7 ) 2 * )& (( (( ( $( 2 $( $ ( $ . ) ( ( $2 $ , ($ + $ + ($ $ ( 0& 2 (, ) 2 2 ( $ ( . 2A ( , ( ((2 # $ ( $ , $ )( ( ( ( ( )( $(( 2$ , "$ $ () ( ! $ $ $2 &. / *, 1 . / /; < &. / *, 1 . . 8 . /; < &. / 1 ,* 3 1 1 /; < / 0 &. / 1 ,* 3 1 1 . 8 /; < . 5 . *$ ( TDC 12°after TDC TS TS ATS 24°after TDC TS 32°after TDC TS ' 40°after TDC TS ATS Thrust side Anti-thrust side 6 . ) 7 , ) . *$ ( 1.8 kHz ' . ) ( # /" • Bore distortions of all 8 cylinders were measured from the noisy engine. • Sound power levels from the 4.6L cast iron block were calculated. 2 kHz frequency band 4.6L cast iron block assembly ? PISTON RINGS, PISTON RING DESIGNS AND CLASSIFICATION - . ' *, 1 * 3 B . 1. . /1 *3 *1 / , / *, 1 * 3 / . ** ,* 1 . 1 .' . * 1 *3 . 1. ,9 ' * 3' 1 ;+ = ' +$' < , ,9 ' . . ,* 1; . )+ > + " . $= " = + ,9 ',4*, ; &,# + .1 " ,# + 1 " ,# < ' . 8 ; )( + "+ 1 "< *3 1 3 ; 1 4 3$3$ < + * / 1 , . ,# & . / *3 1. 2 ) &$ .$ @ )< TYPES OF COMPRESSION RINGS 0 RING END GAPS 0 RING TENSION PRESSURE DESTRIBUTION 0 TYPES OF OIL CONTROL RINGS &$ 0&$ 00 PISTON RING MATERIALS .* 1 , 3 * ) . , * ( * * / . . $ . . . ,* 3 1. $ , ) . $ 05 PISTON RING DESING ISSUES . /1 ; 4&=9 * 3 * 3 =/ + 1 &= ' *,* 1/ . . . 8 , , 1' . * 1 - ,* 1 / . - =** /,9 4 1* 31 *. 1 .* . 1 %8 1 ' =** < /,9 06 PISTON RING FAILURE MODES . -' * 3 '1 * 4 / *3 1 4 07 PHYSICS ASSOCIATED WITH PISTON RINGS 8. / 81 9* 1 * 3 ,* 1;D / 1 *+ =/ 4&=9 *, 1 / ., ' *,* 1/ . . . ' . ,* 3 1,8 1 .- ' . * ,* ' 1 1 ,' , ' *,* 1' */ , 1 ,*/ (,4*,< +3 + . *, 1 * 3 . 1. . . . . 0 *, 1 D / . * *, 1>* . 1 ,* 1 ,*. 0? RING ANALYSIS THEORETICAL BACKGROUND D / *, 1 ,* 1 * . * , & * 33 .' 4 / -/ ,* 1 1 1 / * 3 ,* 1 1 0& * 3,4*, 1 . / * ,* 1 1 / .. -= 9* =/ 4&=9 1 / .. 9* 0@ *, 1 D / . * ,* 1; B y = r 1+ L L − cos(ωt ) − − sin 2 (ωt ) r r % B y = rω sin (ωt ) + sin (ωt ) cos(ωt ) L − sin 2 (ωt ) r B y = rω 2 cos(ωt ) + cos 2 (ωt ) cos 2 (ωt ) sin 2 (ωt ) sin 2 (ωt ) − + 3 L L 2 L 2 − sin 2 (ωt ) − sin 2 (ωt ) − sin (ωt ) r r r 5 < *, 1 1 1 9 ' ,* 3 ' 1 * , & * 33 .' 4 =/ 4=9 1 1 / 5 *, 1 " )$ & * 33 .' 4 1 / / -/ ,* 1 2 B , $ ($ 2 , ) "; ( < 2 # B ) ρ 3 ,, $ 2 &% ) ) 2# ( 5 *, 1 '# & * 33 .' 4 1 / / -/ ,* 1; < B 2γ P 1 m= A R(γ − 1) T1 P2 P 1 1 γ P 1− 2 P 1 1−γ γ '# ) $) ,, γE 0 2$ 2 ) Pc = 0.546 P1 ) '# B mact = K c mtheor > 2( 2 2 ; 76< 50 RING MOTION CALCULATION *3 D / 1 * mr y = ,* 1 F ' B * ' / ) / ) )' ' ' .) F ' C ( "2 55 RING RADIAL MOTION (RING COLLAPSE) $ ( 56 = 0 2 ' 0= @ 1( )2 1 &/ ( ( 2 ' ( = 57 * & 3 ) ( 5 5? =/ 4&=9 * ,* 1 '3 .' 4 . / /1 ; *3 . ,8 . *3 1& < > 5@ =/ 4&=9 . - " *, /1 ; *3 =/ 4&=9 + < /. * 1 * 31 6 *, 1 * 3/ * ,* 1 . 1 -= 8( ( / ) " .2 ) ($ = * ' B 2 ) ' " (B ) " = ' 2 ( (8 ( ( ) 2 ( (8 ( ( ' 2 (( A ( ) 2 (( A ( ) = )( , / ) Ph α Fp Pa α Ft Fp Ft 2 2 4 ' 8( ( ) (C ) $ ) Greenwood and Trip Asperity Model 6 8( ( / ) = 6 A (/ ) ! = ! 60 = )( " ! = #$ 65 9 / . G ,* 1 1 0 (H C ) 3 B 3 ∂ h ∂p ∂ h ∂p dh ∂h ∂h + = 6U + 6V + 12 min ∂x µ ∂x ∂y µ ∂y dt ∂x ∂y (H C ) B 3 ∂ h ∂p dh ∂h = 6U + 12 min ∂x µ ∂x dt ∂x / ) µ/ ) / ) % $ ( ) " A" (" 66 8 9 9 1 * / * ,* 1 -= ' -/ ,* 1 (C ) ∂ ∂x h 3 ∂p ∂x ∂ + ∂z h 3 ∂p ∂z = 6U dh min ∂h ∂h + 12 + 6W dt ∂z ∂x p'$ ) µ/ ) ( h' U A" W . )2 " " )$ (C ) h 3 ∂p ∂ φx µ ∂x ∂x h 3 ∂p ∂ φz + µ ∂z ∂z )2 2 " 2 2 ( )2 φ + = 6U dh min ∂h ∂h ∂φs + 6W − 6U σ + 12 dt ∂x ∂z ∂x 2 )2 ) (( + +" σ $ ) 2 #2 2# + A+ φφ ($ ( ) 2# 67 = -1 9/ * ,* 1' -= $ . 3 -/ ,* 1 ( ) 2 # ( (, $ H $ ( $ $ ) σ 16 2π h 2 c (σβη ) E pa ( h ) = F5 15 β 2σ Ec = σ 1 2 1 −ν 12 1 −ν 2 + E1 E2 = 1 2π β η ∞ ξ− σ σ Φ (ξ ) ξ Φξ ν 6 ' ' Hydrodynamic Friction Frh = A h dp µ ⋅ U − dAxy 2 dx h Boundary Friction Fra = C f pa dAxy A Total Friction Frt = Frh + Fra 6? 4 2 2 8 1. ' * -/ ,* 1 4 "+ " (( ($ " 2 ") (( ( (4 H "4 C ) WaU ψ =k H $ H U Wa k ψ ! # $ " pa dA % ) # 6@ *3= 1 4 4 ψ 1 (t1 ) = k1 +B Ψ 2 ψ 2 (t 2 ) = k 2 +B Ψ 2 4 2 2 (= ψ 3 (t3 ) = k3 0+ 0 B Ψ 4 ψ B (t B ) = k B 4 ; H< W1 (t1 ) U piston H1 W2 (t 2 ) U piston H2 W3 (t3 ) U piston H3 +=B Ψ {W1 (t B ) + W2 (t B ) + W3 (t B )}U piston HB 7 ' A , ) 7 ' 0 ( , ; )B ( + # ! % #+ # $ % 7 < 1 / *1 -. , $ $ 2 ( ( $ $ ) $ 2 ( 2 *$ " ( 2 )( ($ " ( ( ( ( (" )) $ 70 ...
View Full Document

This note was uploaded on 01/29/2012 for the course ME 444 taught by Professor Staff during the Fall '08 term at Michigan State University.

Ask a homework question - tutors are online