solution cont.

solution cont. - mmma’: - 19. If f = 2.734 — Gm? than...

Info iconThis preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: mmma’: - 19. If f = 2.734 — Gm? than which one: of the. f(.)ll(:)wing is true? B A. f has a relative mum. at :1: r :l: 3/‘2 zmd a relative min. at :1: =2: (.l. f has a, relative max. at a: r: O and a relative min. at :1; :2: :l:\/3/2. ' O. f has a. mlnfiiva nmx. Hi. :1: :l—m and n, I'talafive min. at .7: r: D. f has a. relative max. at :1: r: and a relative min. at :1: z: -— E. f has no relative max. points, but has relative min. at, :13 =2 :l: 3/2. W)"— W-IM v} 9 .+2‘<(2x‘—;) 0 "7(10 vi” 278-320 a}; 7g: m w“ l‘ M .— «r 3'»: livifiwe n Myffltw 8 . I 20. The derivative of a function f is f’ (at) 2 932 — Then at m z 2, f has: E ‘ A. an il‘lflection point B. a relative maxiumm C. a vertical tangent Di a cliscm’itimlity a relative minimum “ 7 1 7* H): x - 32... X H V 1 "r W 07“ f' ' E l l“ X}, % Safe “,2 a :9 4 2w 4!, f‘ufim. V c ‘ 3‘ if - _ , é if?) 1 1 w :V a J an; “g. Q; a @Yx‘fv‘mf ire-[£34 44;) i mi?” when. 14m; $5 Wififlué’ Mn are X =12 . \j-flaéhtave a}; ' V l ‘" f‘w ‘ " ‘ e. vs n0 mf/cm’m [mac Qf‘ X—‘wz.’ 10 21. If flan) :2 1%.??? — 9:1: + 2, than on the chlsml interval 0 g m g 4, P A. f has an al‘mnlum max. at :2: 3 and an ulmoluto min. at; 312:: U. 13. f has an absolute max. at a: and an absolute min. at a: 3. Cf. f l‘mra am zallzimc)ln.te max. at. .7: m 0 mu] 1am ulmcxlute min. m; a: m: 4. ® f 11m; an al)s'.(,>lu1;emax. m; x m 0 and an ulsmolute min. at; an a: 3. E. f has an absolutc max. at :1: 41, and an absolute min. at a: U. WNW-“(1'7 =0 a2 Kit? 9 20:3 in {7&9 lam/val. “XML - Mr LYlfr‘M mméey {'5 ,0.» 3_ 7t 3 n mid" .' (5) 1’ ()3"?(3>+2 3' q'zj‘l"? “' "H5 g (is; “(55 5.04%", (0“! a" 5) . clad/Z M W“: 7W) (r2313 we) H: 2‘ . f, ' fill M3" «WWW: “2'57 J] ~42? Vfi l 22. A display emu-2 is in the shape of a rectal‘xgulm box with a square base. Suppose. tkflgggu '13 :21 ygmft, and it costs $1 per square ft. to build the glass top and $0.50 per sq. ft. to build the sides and base. if a: is the length of one side of the base, what value should. m have to migimizc the cost? Round your answer tn two decimal places. A. 3.th ft. @241 ft. (‘3. 3.7411,. 1'). 22:1 fr. E. 336 ft. “.2 y . v“ X Jan “fill 3’ A“ , fig 3? "v “ "W? “m » {MW gr"? M 33:; .,. (,3 g; » fix M 9?. m. (if «WA? f‘ w..- »-» V. fl... +M +mmh ___, .__ m A “1%) E5" L55"? 7? 11 fling, EEK Plgfigfimézgg! 55?»?- .111 the first; (.l11.l(1l?4\11t under the Inn‘nlncjsla y :3:- 4 — m2? 1} 011m] your mmwm- tn 2 (:1 (301111111 11111101»; K A. 1.15 .13. 1.33 @3118 D. 4.00 E. 2.1)7 " i, W; a :r {k ‘ ("51,59 3 WIN/(Eff I 3 by i )1 ‘1' {1- v ' (1‘ -: t, ' f’ ;, 1. ,_ (1‘0 > 1‘ :1 (mm) x znfeva-f ‘ New. 111%):- xj :: 74 (why) :7. _ A”); -gxtrq— :12? 333123 /»l§}'v v " " “_I___L~__~___?K~ I '0 a MS: 7M, W) 9; Mflh'zed (H mm: ACNE“) a "(,MS"$‘.))+9(/~IS$) -' 317? A 24. The radius of a(:1\1;g3._1_1§;;__911xsl‘)111 is i110rtmsing W‘Sfifinm HOW fast. is the area 1010215ng when the radius is 4R? @247rf12 /miu 13,487rft2/min C. Sflft2/1'111n D. 16nft2/min E. fi'antg/min Gk“: a 3 G “Ml: 3??va V if 111: my" “9;; m g: 5 1 1 What is the 1'1'1‘022H.)f' the Imrg'esi; rectangkw with sides [31117511101 to the axes which can 1m inscrilmxl E 1 1 12 “24?. :3: 25. A 111311111':1ct:11r01' has been selling lamps at apiece and. m1 that price, consumers have been B buying 3,000 lumps per 111011101. The 111anufucturer Wishes to raise the price and estimates that for (each 351 1111;111:151: in 011* price, 1000 fcwm‘ 151111115 will be sold ouch 111010.11. Thu 111111111fucttlrm: (m1 [1111111100 the 121111115 at: :1 (ml; of $4 per 11111111). At: what pr'um should 11m 111111111famn11mr sell each lamp to generate the greatest; possible profit? '11. $6.25 @msn 0. $7.00 D. $7.50 13. $7.75 m f»? '1 3-“ 11311211143 w (wt 1 ‘ PM (“WWW we (ea-«f» 1.7M) WWW {mflhwbx vf (a 1pm. >< Mays. ' mme a; 1% la»? $0M m w ("$631000 a: $766? 400% mm {9111 x 1 ‘1an “mm — «1 (7m «'iow‘x’) : (76 w . ~11. , 1 . , I r 7 fix (Wax “Srévw figment/X $4600X2+L3Wbfil>f~dg0t70 PM): “ZOOQX wswo a. a) K: £5" , f“ \‘I’ m) {0 NJ; 2:." * ' 1,, «1+ was" Mafia/r 125w: “WW 7‘“ “M04064 . ‘5 o /J‘ 26. If 18‘” :2 Jig, then 111 which of the following intervals does :11 1'16)? @0<m<1B.—1<m<0 C.1<m<2 D. —2<x<—1 E.2<:1:<3 X )3 if}? f {n}? >11 {W131 13 A, 27. A population has been g;:§§gji»1}g expmmntially. In 1060, it was 50,000 and in 1005, it; was $00,000. W'hat was the population in 1070‘? <A7J‘2(}0§000 B. 150,000 C. 250,000 D. 300000 E. 225,000 */ lz-t l F”) *' PDQ 'f‘ 7‘5 ‘t jam “7/7491 £990. iffl 5 q I :3 a In) ff: 4\ {0 T I a . C} l: D Y ) .! ‘ vii, nil?) 7‘ 1* r ‘ fl; \ A, w v 5“ U 00 $1.4 I‘1b\ w! )5 kg" ”. $390 0 I, (I? ‘2 e 3 2 . a." v 2‘, m, A ,1 33:39} . 110;"? i .‘ T; “ ft“ :97? .gwia ) Vina; if? 9 1500996 JOWOU “Tina-x.) X " l ' \ '28, The amount of a certain 1'adioactive summmm 1'011‘12tini1’1g after t years is given 1); a functic’m of the form Q(t) Qge”“‘003‘. The Vbnli}!ifo if the substance is: A. 53 years 13. 0.00435 years (1.333 years ' ‘231 yozu's E. 107 yours; W ) , ‘ L1 .3‘ ' '1"? £4.2sz , H7 1 17"! “:1” ' f' ‘ ' V“ ' r J? 0. V “9 % ¥ 7 15': : w y]; tn“ \' u w Hg 2 111 v 1 — m2 then z 1 yv . 2L :1: fl '1 .1 '1 A' W B’—\/1——E§ ®U~x2 D‘ 2(1—x2) “WI—w? \ ! mi N s. ‘” WWW. 3'“ w ' 1 w, M taxi m x‘) m) _ ....... a J- W a ("m") x “‘“x , ' -<M 3H~X11> aux” ‘30 l P $8. Ifyzefi 151mm fd—Z :. m2 2 922—4 c nag—1 WM. my 2:: A. e B. :1; e C. 21:9. dflxe E. 3 oz x‘“ ‘ a .33); In“ :1, a 7g; ea! :5 fif E “H What lump sum of money should be (IODHSHKK‘I in a n‘wuey men-km; (:tcrt;ilic:ntc paying 8.25% interest €013,991]:icignggonfihly to ::1.11'1mn'1.t. to $5UUU iju LU yezznm'! Rxmnrgl your answer m the nearest dollar. ' A. $2514 13.34669 C. $2740 D. $2202 Q $2197 B1, £1'}' Y;,O.Dkl?9 / f&’0_ Bl £19670 d.08‘"2._5"' 921/0) WWW) SJ?" 0 9.01115 ME 3" 2’ dollar'fi n {£960 P ( H, r: .. C, 1+ 3‘1» . %. mgggxfiouble if it is invested at. a rate of 8 percent gggggg‘gpAggcgl t';1u91181y'? Round your answer to tfiJESwa‘ecilnal places. ” "'~ A. 30.87 years B. 25 years C, 5.55 years 8,66 years E. 6.33 years g; 5 e "a; “(a m 7w m 0‘0 8” v: “5? J .22 a} HIM"? Suppose the total cost in dollars of producing q units: is: C(q) 263"“? -+- 3:12 ~ 2. Calculate the marginal cost whellfiJuups“1mm leggng produced and calculate the actual (20813 of pmduciug the A 6th unit. Round your auswm' to the nearest cent. @. maxginal cast 2: $29.99,:mtua1 cost $32.9!) B. marginal cost :2: actual cost $20.9!) C. marginal cast == $29.99,actual cost $36.00 D. marginal cost :2 $30.01, actual cost - $32.99 marginal cost w actual cost ~ $30.01 mav‘rgmé’ Mi. :: (701,-): 26' («0% (w #76:“?4'6‘1/ 6(5)::- ‘3. 267% 6w); MW atfw! we a} {lanky we 41% MM, - 64(6)» its):{ig’5+3(6)'~‘z.‘] w 1-113 8 A cylimh'iczd can with no top has been made from 271T square incur»: of metal. Exprws the volunite, V , of the can as a function. of its: radius: 'r. A. V : 277W2 QV = gflQT — 1"?) C. V :: «73127 —-7‘9 — 27') D. V = 277873 . V : §m~2(27 _ r2) :w m mm wifioug far 1;. 15 r ’11, “WA .7 IL. A EA V E w “HAWK 2W“ {ifi m Y “T?” a In, if '1‘ :1 'l Zyay?’ ‘ V" Wm V {M )i 9U" u " :Hw-r) I 5 S E ll)‘ 35. n' what; value of a (Inn‘s the function f (:23) r: m2 + an: have. a. regatgiw miuhmun at: :1? 1'? , . ‘ I .—2U0(H2U-1EJ V . H130! hz4wéPg‘ i‘l/w\~%}{/' Ki . “PM? 0. a f an} 2 s5, ygfrg mgfigrfiflm § Vuluum 5: S1’x1'fmfio Area. FCHMIULAS Right; Circxihl‘ Cylinder V 2-. «7‘21: 27'1"?“2 + 2777']; SA { 7T'l‘2 + 21771:. Intxérost Formulas mnmPu+flm B (t) at P8” Answers 1. B; 2. C; 3. D; 4. (31,5. 13: 6. D; 7. A; 8. C; 9. A: 10. B; 11. D; 12. A; 13. B; 14. A: 15. B: 16. B; 17. D: 18. C»; 19. E3; 20. ‘21. D; ‘22. B; ‘23. C; ‘34. A: B; 26. A: ‘27 A: If); 20. C; 30. D; 31. E: 3‘2. D: 33. A; 34. B: 35. A; ,1___w_‘__”_mm__r__w> ; ‘ ’L r ' * " .77 ...
View Full Document

This note was uploaded on 01/30/2012 for the course MA 223 taught by Professor Staff during the Fall '08 term at Purdue University.

Page1 / 9

solution cont. - mmma’: - 19. If f = 2.734 — Gm? than...

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online