This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 ( 29 2 2 2 1 1 7 12 2 C C K s KG s G s T s KG s G s K s s K + = = + + + + + . The closedloop characteristic polynomial is (1+ K ) s 2 + 7 s + (12+2 K ). Since the closedloop characteristic polynomial is second order, the closedloop system is stable if all of the Root Locus coefficients are the same sign. Therefore, the closedloop system is stable for all positive values of K and the Root Locus does not cross the imaginary axis. The Matlab code for producing the Root Locus Diagram is sys = zpk([sqrt(2) sqrt(2)],[3 4],1); figure; rlocus(sys), title('G_C(s)G(s) = (s^2+2)/[(s+3)(s+4)]'); The Root Locus Diagram is shown below.432121 1 2 G C (s)G(s) = (s 2 +2)/[(s+3)(s+4)] Real Axis Imaginary Axis 2...
View
Full
Document
 Spring '11
 LANDERS

Click to edit the document details