Ch8-Internal Flows

# Ch8-Internal Flows - • Special Case Uniform External Fluid Temperature 1 exp exp m o o s i m i p p tot T T T U A T T T mc mc R ∞ ∞-∆ = =-=

This preview shows pages 1–9. Sign up to view the full content.

Chapter 8 Internal Flows

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Velocity boundary layer develops on surface of tube and thickens with increasing x . Inviscid region of uniform velocity shrinks as boundary layer grows. Subsequent to boundary layer merger at the centerline, the velocity profile becomes parabolic and invariant with x ( hydrodynamically fully-developed flow).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Thermal boundary layer develops on surface of tube and thickens with increasing x . Isothermal core shrinks as boundary layer grows. Subsequent to boundary layer merger, dimensionless forms of the temperature profile become independent of x (thermally-fully developed flow).

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: • Special Case: Uniform External Fluid Temperature , , 1 exp exp m o o s i m i p p tot T T T U A T T T mc mc R ∞ ∞ -∆ = =-=- ÷ ÷ ÷ ÷ ∆- & & m s m tot T q UA T R ∆ = ∆ = l l replaced by . m s T T T ∞ ∆ → l Note: Replacement of by T s,o if outer surface temperature is uniform. T ∞ ( 29 ( 29 , , ′′ =-′′ =-i i s i m o o s o m q h T T q h T T ≡ ≡ i h o h i o h D h D Nu Nu k k Concentric Tube Annulus...
View Full Document

## This note was uploaded on 02/01/2012 for the course MECH ENG 225 taught by Professor Koylu during the Spring '11 term at Missouri S&T.

### Page1 / 9

Ch8-Internal Flows - • Special Case Uniform External Fluid Temperature 1 exp exp m o o s i m i p p tot T T T U A T T T mc mc R ∞ ∞-∆ = =-=

This preview shows document pages 1 - 9. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online