The University of Hong Kong
Department of Statistics and Actuarial Science
STAT1801 Probability and Statistics: Foundations of Actuarial Science (10-11)
Example Class 3 Solution
1.
Suppose random variables
𝑋𝑋
and
𝑌𝑌
have the joint pdf
𝑓𝑓
(
𝑥𝑥
,
𝑦𝑦
) = 3(
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
)
for
𝑥𝑥
,
𝑦𝑦 ∈
[0,1]
.
(a) Find
𝑃𝑃
(
𝑌𝑌 ≥
2
𝑋𝑋
)
.
𝑃𝑃
(
𝑌𝑌 ≥
2
𝑋𝑋
) = 3
�
�
(
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
)
1
2
𝑥𝑥
𝑑𝑑𝑦𝑦
1
2
⁄
0
𝑑𝑑𝑥𝑥
= 3
�
�
𝑥𝑥𝑦𝑦 − 𝑥𝑥𝑦𝑦
2
+
𝑦𝑦
3
3
�
𝑦𝑦
=2
𝑥𝑥
𝑦𝑦
=1
1
2
⁄
0
𝑑𝑑𝑥𝑥
= 3
�
(
𝑥𝑥 − 𝑥𝑥
+
1
3
1
2
⁄
0
−
2
𝑥𝑥
2
+ 4
𝑥𝑥
3
+
8
𝑥𝑥
3
3
)
𝑑𝑑𝑥𝑥
= 3
�
𝑥𝑥
3
−
2
𝑥𝑥
3
3
+
𝑥𝑥
4
+
8
𝑥𝑥
4
12
�
0
1
2
=
5
16
(b) Find the marginal pdfs of
𝑋𝑋
and
𝑌𝑌
respectively.
𝑓𝑓
𝑋𝑋
(
𝑥𝑥
) =
�
3(
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
)
1
0
𝑑𝑑𝑦𝑦
= 3
�𝑥𝑥𝑦𝑦 − 𝑥𝑥𝑦𝑦
2
+
𝑦𝑦
3
3
�
0
1
= 1
𝑓𝑓
𝑌𝑌
(
𝑦𝑦
) =
�
3(
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
)
1
0
𝑑𝑑𝑥𝑥
= 3
�
𝑥𝑥
2
2
− 𝑥𝑥
2
𝑦𝑦
+
𝑥𝑥𝑦𝑦
2
�
0
1
= 3
𝑦𝑦
2
−
3
𝑦𝑦
+
3
2
(c) Are
𝑋𝑋
and
𝑌𝑌
independent?
𝑓𝑓
𝑋𝑋
(
𝑥𝑥
)
𝑓𝑓
𝑌𝑌
(
𝑦𝑦
)
≠ 𝑓𝑓
(
𝑥𝑥
,
𝑦𝑦
)
⇒
Not
Independent
(d) Find
𝑓𝑓
𝑋𝑋
|
𝑌𝑌
(
𝑥𝑥
|
𝑦𝑦
)
.
𝑓𝑓
𝑋𝑋
|
𝑌𝑌
(
𝑥𝑥
|
𝑦𝑦
) =
𝑓𝑓
(
𝑥𝑥
,
𝑦𝑦
)
𝑓𝑓
𝑌𝑌
(
𝑦𝑦
)
=
3(
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
)
3
𝑦𝑦
2
−
3
𝑦𝑦
+
3
2
This
preview
has intentionally blurred sections.
Sign up to view the full version.
=
𝑥𝑥 −
2
𝑥𝑥𝑦𝑦
+
𝑦𝑦
2
𝑦𝑦
2
− 𝑦𝑦
+
1
2
2.
Suppose
𝑋𝑋
and
𝑌𝑌
are discrete random variables with a joint pmf as following:
X
-1
0
1
-1
1/6
1/9
1/9
Y
0
1/9
0
c
1
1/18
1/9
1/6
(a)
Find the value of c.

This is the end of the preview.
Sign up
to
access the rest of the document.
- Fall '10
- MrChung
- Statistics, Probability, Actuarial sciences
-
Click to edit the document details