Fall2009_final_exam_QM_I_5250

Fall2009_final_exam_QM_I_5250 - Final Examination, QM I,...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Final Examination, QM I, Physics 5250, Fall 2009 Problem 1. Consider a particle of mass m that has the following two-dimensional Hamiltonian: H = p 2 x 2 m + p 2 y 2 m + 1 2 m 2 ( x 2 + y 2 ) . Suppose you are given the one-dimensional energy eigenfunctions for an oscillator of the same mass and frequency, denoted u n ( x ) for the eigenstate at energy E n = ( n + 1 2 ) ~ . Using this information, answer the following questions: (a) What are the energy eigenvalues and eigenfunctions of this 2-dimensional Hamiltonian, and what is the degeneracy of each energy level? (b) Suppose there are 4 identical noninteracting fermions, each experiencing the above Hamiltonian and each in the same intrinsic spin substate. Find the ground state energy and wavefunction of the system, and state its degeneracy. Problem 2. . Prove that for a 1-dimensional system, e ipa/ ~ ( x ) = ( x + a ) , where p =- i ~ x is the momentum operator in the position representation....
View Full Document

Page1 / 2

Fall2009_final_exam_QM_I_5250 - Final Examination, QM I,...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online