Matching networks part 2

Matching networks part 2 - ....__.___.____ {

Info iconThis preview shows pages 1–17. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ....__.___.____ { __—_____.___.<_—~_____—__.____g____.____.~_ (a) Impedance transformations displayed in Smith Chart =975nH CL 509 L Rf: 2.6 pF OHH% 509 C: RS: 0) ( (b) HPF LN: Resulting matching networks Figure 8-8 Two design realizations of an L-type matching network. Wflfiww‘.M—_M____~____T_ Circuit in Figure 8—8(b) Input reflection coefficient [Pi 0.5 1 1 5 Frequency f, GHZ (a) Frequency response of input reflection coefficient 2 2.5 -3 Circuit in rive» U14>UI Circuit in / Figure 8-8(c) Transfer function H, dB 1 .5 Frequency f, GHz (b) Transfer function of the matching networks 2 0.5 1 #ME x092 F927 BOTH NWD-{ULS O/UU/ 78:. 5g (mg/«590 A5 ego/away“ C/IZCu/TS CAM CHM/HS w/ 7Q 7Q Bu) awe, 6w ,— .' GEL FM” 0/: My N, 3 055 am. swam PEEPDAJSE NBA/l 743. OF MM; 7Q BPF gum LOADQO ((3%) M Aflz‘filk/6) flew/VANCG P72 QEUEWC S/fllLA/UTV 2/”: Ti 2'0 - 4L9 W26” flu, {] —dL/RQC._(,> MW_‘_’._..,H : imwflw / _fl_fl KL!” JjCLP / *dwflucu’ / / db'fwckg 0—LWW'W”:Z ; R Le ' J W (SC L? F -——T“ 2/2 / + wL/ZSCL: ZMP «Lew-P j LP “5: '2' 2 : pt-p z P / w. “MW” [e a m L r ( #(90‘9E Cw ) QLP W Le u /+ 4,2 2‘4, CAP 60 j‘ / ZINP ‘ 2N5 KL- : w CL —- f 2 @ £3; L w ‘ 37 WW7“ 2 /r (A M ¥ X " + j m \/ \‘AD 15 9 a “" 3”" W 8 § IN x GM x LN k 3. ............ “MLLWQ ’ p- _ 15.. 1/N ; lN 2m #5 v a * WL ‘ to“ L: S 5 Z ’ kl : |rdeva fl" ’ 6N +(deN3 deN cw + i VS : is 2m I‘M» éCULN : 7 L z Z/TH *6“ > __ L + MIL” 6'“ .- w U 625 + de— 4wa z ._,,...__.. I 4* «0“ Lu GA K5 : LQZL: (“J L : LN “W L /+ mm: )+ mfg» ———————? V-r -.~ ‘1 - “Kn VT : Lila; V5 MMMMMMM W I ml: \ R5 Q51; a /Z5,/ I WM ‘‘‘‘ n Vb I: 2413/“ gt.” "'"CT 125.: VT “Zn” <(j‘SS-PF 2 , 62.511 am: WNW k 0 é/ & : M79, : WORTC 3 *"J" = ' L 6w /X¢/ /7 /- /V / .-. woe/v»; VOL/T " b RL + m \/\o \jwf \[ CH W9 :w7 firm?) i" M" : j {Vau7’" 20 f ’ 2 /o _: " ‘ 05, {VS ( 2 038 + 20 5/V5/ 39794 Equivalent / filter _ Circuit in ‘1 Figure 8-8(c) Transfer function H, dB 1 .5 2 Frequency . f; GHz (b) Frequency response of the matching network compared to the equivalent filter response @L: 0.691: 3-5,— £=/6Hi 8.95,) ,,,,,,,,,,,,,,,,,,,,, WWW 3w = l, 63 6W2 cease WM.Wfl.-WW. Figure 8-10 Comparison of the frequency response of the L—type matching network and an equivalent bandpass filter. a) we Mil/é MW 70 “fifiMATE figs/M55 67F WW AND 4/0 5 5'377MA770IO 0}: 73.00, *F9C0MPi/Tflflbzt) Is CDMM-«e’lc (780/005) """""""""" U56 Noam, Gag/Ty [ach fax/awe» Mao/vb SC. 7D WU, Mom.“ CAN 6%; (ix/dfléssm W/Le H r //U A C(flCu/T} EJAC Mom, (0A I B WM/ILLBL ADM/Tme )2, 6/ +0; ’0 Mag/{)5 0/5 HAM/é ,4 (Q1 AT CAM/1‘ N006 {UWCH Wit/72,6 67 : /Xs/> /6,o/ '1 M at ————————— £5 67F 6“ C W MAX/MUM @n [5 AT (>0ng .8 2=/ ’01 ['23 a”: /./33/;/.23 " Q“ ; mm WWWS Paoewm @6044: Qt?" Q; 772“? PM AW L’ Hyman}: MM. 079% Alma/L149 537W“? @L. 2‘ Q’LWHAx CAM 0e“ 05% 79 com/We“ Nmoa/cs, ____________ ___.___ _.__________________________._ __ ~_____,_____,__.___._...______ ,___.____.._¢_-fl Figure 8-11 Constant Qn contours displayed in the Smith Chart. (a) Impedance transformation in the Smith Chart Rszsog L:0‘8nH' LL=3.18nH RS=509 C23.54pFLL=3.18 nHV Resulting matching networks Figure 8-12 Two L-type matching networks for a 50 9 source and a ZL = (25 +j20)§2 load impedance operated at a frequency of 1 GHz. 84 DES/6N Two L A/E7UM/Cf Mf MATCH 2L12§+J20 .(L ‘To A sofl goo/“é (€3/6fé D gal/MING (9., o F W31! NW‘D/C/Cj} 50/46“? L752 gAfl/DUW To flaw? fl @33on. (flw’ W- L'MM ) \é i251). §3Luflop , Fflom a6 8-7 a) b M “W Z 1, ' 0 S + & 0 LI 3 7,31%”; “"0 E 3005.7(1; £121-: y QL GA 16% aH"_W'*7"*"W—m7*_T———_T'fl“‘M—g—“T-mef'm'fl‘ _8 ................. _ .1 ______________ .. r. ' , ....... . _._r- ...................... ._T .............. m... Figure 8-12(b) / ' . ’ r / a I \O —-‘ -—10L Figure 8—12(c) 1.. ,1 . _ . . _ . . _ . _ . . _ o . . _ . . _ . . . . _ ~ . . . _ . . . . _ _ . . . _ _ _ _ _ . . _ . . . _ _ . . . . .— .L N Transfer function H = Vo'm/ VS, dB .L 9’ l 4;. L. 01 0 0.5 i 115 2' 2‘5 3 3,5 4 Frequency fi GHz . - 27f; 8w ’ Q = 2 6/742 _ AU 2 257/7: [39; 8077/ (Assame’ 5VMMW/éy@7€) ACTUAL} & (SD 1: 2,5 6/712 Figure 8-13 Frequency responses for the two matching networks. Far; BROADBAUD MPUCMWODE we 0mm Low é) Fm: osmocAm DEB/Gus CUE 7363/sz /7‘7(§H 6? “7‘0 amwATt HAflMomcg, L» put-{WORKS pmvubé IUD COMM. cum Q“ "‘ - e ILK WWWWC/A/d A Wflfl ELL/WET” — / 0» Pk NCTwD CAN é/ue us WT Ame/77 Figure 8-14 General topology of a T-type matching network, DESI 6/0 7" MN '7‘0 'T'flA/USFDKN 2L: (gov/3o .n. //U7"O A“: /o +dZOJL 72> H74“: A QH'MAX: COMPc/flf CoMPo/Ue-ruT; F04 Mme/mus (a? /: /éH% 0M?" smuwou; H/CWL (Q "’ WMQOQJ Ea) Figure 8-15 Design of a T—type matching network for a specified 0,, = 3. Z' /S flmcflutj 7, POINT A an r‘ : {‘L 23 )5 CONNECTE‘O So W ‘ f‘ ; M r :3 “Z 3 IS CONUEZTEO TD PLACE' 100/40! .3 on n L3: 7.85 nH Cl: 8.72 pF [*9 I C2: 3.53 pF Z1. 1: E Figure 8-16 T-type matching network circuit schematics. 8% Damn BMADOAND WWW/’7?“- (fl/~MU) TOWANSFDLH ELa/o-d/o To Z/N: 20+d40 flux/ou/é' LowEST Panes/OLE @k, Fur fGDZVGs/fi bow/“DON: CAM/m JPQODOCE Q“ swung/i MN M MGWQV G) A 7" 2 AND 27L}. Q PLOT Comsmm' CoNDdCWM/CE C(RCLE @ MM“- 3= 8,» W'raasc—‘zmou Pom/’7” B @ END //t/7?:Q.S€C7>04J 0/: {323,} Am; MUST I‘@ B CO/USDOUT CouDucnmLt' 79/75 {3 LED/MT" A @ Foccoa) Pam/'7’ A 6ACK To 2; C2, 3 ( NW” L I g? EL A ,,,_V,-fi-_w___..l__r.. C2 = 1.65 pF L3 L1 1.66 nH 1.31 11H 2. 111 Figure 8-18 Pi-type matching network configuration. pm? (wow) AU L, NW0“ flC/7‘7WE 9 ...
View Full Document

This note was uploaded on 01/31/2012 for the course EE 4002 taught by Professor Scalzo during the Fall '06 term at LSU.

Page1 / 17

Matching networks part 2 - ....__.___.____ {

This preview shows document pages 1 - 17. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online