Lecture 4

Lecture 4 - sense. It is simply a ratio of magnitudes of...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
EE 4002 RF Circuit Design Transmission Lines Part 2 General Impedance and Microstrip transmission lines
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
General Impedance Defined: We can develop the impedance equation from what we have derived so far for traveling waves. 0 ( ) ( ) ( ) R j L R j L Z k G j C ϖ + + = = + ( ) ( ) ( ) dV z R j L I z dz - = + ( ) kz kz V z V e V e + - - + = + ( ) ( ) ( ) kz kz k I z V e V e R j L + - - + = - + Traveling voltage wave: KVL on an infinitesimal segment of a TL Writing equation in the form: yields an expression for impedance: V I Z = Execute derivative and solve for current:
Background image of page 2
Taking this further: Substitute the current wave equation in for I ( z ): ( ) ( ) ( ) kz kz kz kz k I z I e I e V e V e R j L ϖ + - - + + - - + = + = - + ( ) ( ) kz kz kz kz k I e V e R j L k I e V e R j L + - + - - + - + = + = - + 0 0 V I Z V I Z + + - - = = - 0 V V Z I I + - + - = = - 0 1 ( ) ( ) kz kz I z V e V e Z + - - + = - Finding like terms, and substituting the impedance equation yields: The characteristic line impedance is not an impedance in the conventional
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: sense. It is simply a ratio of magnitudes of the traveling waves. Lossless Transmission Line Model: We will now represent a TL Section with this model: Calculating Z o Using table 2-1, (TL parameters R,L,G,C for various geometries) we can calculate Z for different TL geometries. For simplicity, lets assume the TLs are lossless. Ex. Parallel Plate TL L C ( ) (0 ) ( ) (0 ) R j L j L L Z G j C j C C + + = = = + + L d Z C w = = Free Space Z o The wave impedance is defined as: For Free space and therefore for free space. Z = 377 Z = = = Microstrip Transmission Line...
View Full Document

Page1 / 8

Lecture 4 - sense. It is simply a ratio of magnitudes of...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online