Hw2 - Homework 2 CISC 303 Timo Ktzing (tkoe@udel.edu)...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Homework 2 CISC 303 Timo Ktzing (tkoe@udel.edu) Handed out: Monday, February 16. Due Date: Friday, February 27. Note that the Problem 1 gives you a choice of two parts, you don't need to submit both (no extra credit for submitting both parts). Further note that the last problem is an extra credit problem. Problem 1. (8 points) Do EITHER ONE of (A) or (B) below. You do not need to hand in solutions to both problems . (A) Let S be a set, let M,N S . For each T S , we write T for S \ T (all elements of S that are not in T ). Prove, in detail, the following set-theoretic claims. (i) M = M ; (ii) M N = M N ; (iii) M N = M N ; (iv) M \ N = M N ; (v) M = N ( M \ N ) ( N \ M ) = . (B) Let M = ( A,Q,,F,q ) be a DFA. Let v,w A * be such that * ( q ,v ) = * ( q ,w ) . (1) Use Equation (1) to show u A * : * ( q ,vu ) = * ( q ,wu ) . (2) Then conclude u A * : vu L ( M ) wu L ( M ) . (3) Hint: Prove (2) by induction: rst show it is true for u = ; then suppose it is true for some...
View Full Document

Page1 / 2

Hw2 - Homework 2 CISC 303 Timo Ktzing (tkoe@udel.edu)...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online