editors in fifth international conference on

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ] M. Gribskov, A. D. McLachlan, and D. Eisenberg. Proc. Nati. Acad. Sci. USA, 8 4:4355-4358, 1987. [Goo65] I.J. Good. The Estimation of Probabilities: An Essay on Modem Methods. M IT Press, 1965. [GOR78] J. Garnier, D.J. Osguthorpe, and B. Robson. Analysis ofthe accuracy and implications of simple methods for predicting the secondary structure of globular p roteins. Journal of Molecular Biology, 1 20:97-120, 1978. Bayesian 184 Clasificación Supervisada Basada en RRBB. Aplicación en Biología Computacional [GZ02] [Hay99] R. Greiner and W. Zhou. Structural extensión to logistic regression: discriminant parameter learning of belief net classifiers. In Proceedings of the 18th National Conference on Artificial Intelligence, p ages 167-173, 2002. S. Haykin. Neural Networks. A Comprehensive Foundation. N ew Jersey, 1999. Prentice Hall. [Hen88] M. Henrion. Propagating uncertainty in Bayesian networks by probabilistic logic sampling. Uncertainty in Artificial Intelligence, ( 2):149-163, 1988. [HH92] S. Henikoff and J. G. Henikoíf. A mino acid substitution matrices from protein b locks. Proceedings of the National Academy of Science USA, 8 9(22): 1 091510919, N ovember 1992. [HK89] H.L. HoUey and M. Karplus. Protein secondary structure prediction with a n eural network. Proceedings of the National Academy of Science U.S.A., 86:152-156, 1989. [Hol94] R.C. Holte. Very simple classification rules perform well on most commonly u sed databases. Machine Learning, 1 1:63-90, 1994. [HS94] T.K. Ho and S.N. Srihati. Decisión combination in múltiple classifier systems. IEEE Transactions on Pattem Analysis and Machine Intelligence, 1 6:66-75, 1994. [HSSS92] U. Hobohm, M. Scharf, R. Schneider, and C. Sander. Selection of a representative set of structures from the brookhaven protein data bank. Protein Science, 1:409-417, 1992. [HTOl] D.J. Hand and R.J. Till. A simple generalization of the área under the ROC c urve for múltiple class classification problems. Machine Learning, 4 5:171186,2001. [HYOl] D.J. Hand and K. Yu. Idiot's Bayes - not so stupid after all? Statistical Review, 6 9(3):385-398, 2001. International [ILESOO] I. Inza, P. Larrañaga, R. Etxeberría, and B. Sierra. Feature subset selection b y Bayesian network-based optimization. Artificial Intelligence, 1 23:157-184, 2 000. [JenOl] F.V. Jensen. Bayesian Networks and Decisión Graphs. S pringer-Verlag, 2001. [JL95] G. John and P. Langley. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the llth Conference on Uncertainty in Artificial Intelligence, pages 338-345, 1995. [JLTW93] D. Juretic, B. Lee, N. Trinajstic, and R.W. WiUiams. Conformational preference functions for predicting hélices in membrane proteins. 3 3:255-273, 1993. [Jon99] Biopolymers, D.T. Jones. Protein secondary structure prediction based on position-specific s coring matrices. Journal of Molecular Biology, 2 92:195-202, 1999. BIBLIOGRAFÍA 185 [KA90] S. Karlin and S. F. Altschul. Methods for assessing the statistical significance of molecular sequence features by using general scoring schemes. Proc. Nati. Acad. Sci. USA, 8 7:2264-2268, 1990. [KanSS] M. Kanehisa. A multivariate analysis method for discriminating protein secondary structural segments. Protein Engineering, 2 :87-92, 1988. [KBH98] K. Karplus, C. Barrett, and R. Hughey. Hidden Markov models for detecting r emote protein homologies. Bioinformatics, 1 4:846-856, 1998. [KBS97] J. Kohavi, B. Becker, and D. Sommerfield. Improving simple Bayes. Technical r eport, Data Mining and Visualization Group, Silicon Graphics, 1997. [KCL90] D.G. Kneller, F.E. Cohén, and R. Langridge. Improvements in protein secondary ptructure prediction by an enhanced neural network. Journal of Molecular Biology, 2 14(1) :171-182, 1990. [KDS+60] J.C. Kendrew, R.E. Dickerson, B.E. Strandberg, R.J. Hart, and D.R. Davies e t al. Structure of m.yoglobin: a three-dimensional Fourier synthesis at 2 A mstrongs resolution. Nature, 1 85:422-427, 1960. [KJ97] R. Kohavi and G.H. John. Wrappers for feature subset selection. Intelligence, 97(1-2) :273-324, 1997. [ KJL+94] R. Kohavi, G. John, R. Long, D. Manley, and K.Pñeger. Mlc+-I-: A machine l earning hbrary in c + + - Toáis with Artificial Intelligence. IEEE Computer Society Press, p ages 740-743, 1994. [KMLS92] R.D. King, S. Muggleton, R.A. Lewis, and M.J.E. Sternberg. Drug design b y machine learning: The use of inductive logic programming to model the s tructure-activity relationships of trimethoprim analogues binding to dihydrofolate reducíase. Proceedings of the National Academy of Science U.S. A., 8 9:11322-11326, 1992. [Koh95] R. Kohavi. Wrappers for Performance Enhancement and Oblivious Decisión Graphs. P hD thesis, Stanford University, Computer Science Department, 1995. [Koh96] R. Kohavi. Scaling up the accuracy of naive-Bayes classifiers: a decision-tree h ybrid. In Proceedings of the 2nd International Conference Discovery and Data Mining, p ages 202-207, 1996. on Artificial Knowledg...
View Full Document

This note was uploaded on 02/01/2012 for the course . . taught by Professor . during the Spring '11 term at Pontificia Universidad Católica de Chile.

Ask a homework question - tutors are online