Midterm 2 - Solutions

# Midterm 2 - Solutions - 1. Let T : V ——> W and S : W...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. Let T : V ——> W and S : W —> Z be linear transformations. Prove that S T : To if and only if R(T) Q N (Recall that To denotes the “zero map”: Tg(\$) = 0 for all :1: E V.) \ I éaﬁrfw~ ~~€ (ml w 2. Let V and W be n—dirnensional vector spaces, and let T : V —> W be a linear transformation. Let {1J17 . . . ,vn} be a basis for V. Prove that T is an isomorphism if and only if {T(v1), . . . ,T(vn)} is a basis for W. (ZS-1?} A512; (AM if m iﬁié’i‘r’iéﬁf 6/7246 T [:5 /y*‘ Moi Iii/H] (I 7 Vi I? of 0 n diff (ll/3a W /i {WM ,» die? a (iiicgfmgf (“WW a 5* 9 r 5 g I "(f/1" sf“: “g; i - D I ' a k 4n ﬁx? “KM liftiiﬂf imam W6 W/ ie «W “W W: “i 2“! k A M j; i K, , ,, W - n V I; if}; NM ; ifs” (iv {mew/i x/siiﬁ. **"‘“’ ‘ j an I; .. J. £4 [3' Aéwmé 5?; 77%} i3} ‘3" ﬂ mg”: é” W“ 7: iii/3M? + m6; }/ «f: TQM; {Iii is; c 2T ' NT) :- W, sit/L if is i f 1*” N9 «2% din/Vi (Wg MM Dimmer T/ T /‘5 4M / “// my"? a (I / 17/1/43? wt 40. iéﬁ/hﬁﬁﬂiégéém, \$1 3. (a) Write down a formula for a linear map T : P2(R) —% R3 such that Z (3) 1: _2)7 T(X2 +X) = (1, —2, 1), and T(X2 + X + 1) z (—3, 6, —3). (Your answer Shguld be 1711‘ the form T(a + bX + CX2) = . . . L51 {2.1131114 is» 1“ 45mm M 131.51%, {a My? 1’21 j 112(‘21/1 112% 7.451651 tza/ 5+1: :: é, H V I v a, / Hﬂﬁ; {2/ 5351/51 5m; {1: W51 i’iééwﬁ)’: géwéi ) (In 1111/!“ Ma 1 [sz5be (11%»11/1’k W 711% W + 5 X1); W? W 11% M) I 'w ’v ’z‘ j w”? {g \ )1 IV; I / (é: 9,:{jlg1’wgi “’3' {ﬁwﬁfg [5"2; {ﬂ -¢j«j) : + “1:13 : 1111:5141}111M ) if M “2M” 34 k (‘0) Compute rank(T) and{31111161711:1‘1371“aﬁaﬁﬁpmsm. 0m 11515113: NUS: 5WJA(ET(XZ}, T (:1 111)}; :1 4. Deﬁne T : P2(R) —> BUR) by = - X2 + f’. Let [3 2 {X2 — X — 3,X2 +2X+ 1,3X — 2} and let 7 = {X2,X, 1}. (a) Compute the matrix [T]? (13) Let Q be the Change of coordinate matrix that changes ﬁ—coordinates to 7~coordinates. Qompute Q. (M J; (C) Using your answers from parts (a) and (b), write down an expression for the matrix [TM (You do not need to'muitiply out the matrices.) V i E! «WW I WW? gm: MW: 2 3< é i *2 ...
View Full Document

## This note was uploaded on 02/02/2012 for the course MATH 115A 262398211 taught by Professor Fuckhead during the Spring '10 term at UCLA.

### Page1 / 4

Midterm 2 - Solutions - 1. Let T : V ——> W and S : W...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online