{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW_6_problems

# HW_6_problems - §1brs 35500 CEé 304 fﬁd 757 VII-F113...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: §1brs 35500 ' CEé 304/ fﬁd 757% VII-F113 The cylindrical container in Fig. P3.l3 is 20 cm in diameter and has a conical contraction at the bottom with an exit hole 3 cm in diameter. The tank contains fresh water at standard sea-level conditions. If the water surface is falling at the nearly steady rate dh/dt z —0.072 m/s, estimate the average velocity V out of the bottom exit. ,4 Q) /o 2/ // P3.1\3 £3.14 The open tank in Fig. P3.14 contains water at 20°C and is being ﬁlled through section 1. Assume incompressible ﬂow. First derive an analytic expression for the water-level change dh/dt in terms of arbitrary volume ﬂows (Q1, Q2, Q3) and tank diameter d. Then, if the water level h is Con- stant, determine the exit velocity V2 for the given data VI = 3 m/s and Q3 = 0.01 m3/s. Q3 = 0.01 m3/s D2=7cn1 _. P3.14 v ram- :' 6)~‘« L—d—l P3.9 A laboratory test tank contains seawater of salinity S and-25:? density p. Water enters the tank at conditions (SI p1 A1: V1) and is assumed to mix immediately in the tank 'i‘ank water leaves through an outlet A2 at velocity V2. If salt is a conservative” property (neither created nor destroyed),§§ use the Reynolds transport theorem to ﬁnd an expression“? for the rate of change of salt mass Msah within the tank. r '5‘; i i , 36 A thin layer of liquid, draining from an inclined plane, as in Fig. P326, will have a laminar veloeity proﬁle u z U0(2y/h — yZ/hz), where U0 is the surface velocity. If the P326 plane has width [7 into the paper, determine the volume rate of ﬂow in the ﬁlm. Suppose that h = 0.5 in and the ﬂow rate per foot of channel width is 1.25 gal/min. Esti— mate Uo in ft/s. P336 The jet pump in Fig. P336 injects water at U1 = 40 m/s through a 3-in—pipe and entrains a secondary ﬂow of water U2 = 3 m/s in the annular region around the small pipe. The two ﬂows become fully mixed downstream, where U 3 is approximately constant. For steady incompressible ﬂow, compute U3 in m/s. Mixing region Fully D] = 3 in Inlet mixed [7W#é , a ﬁxed plate. P340 The water jet in Fig. P340 strikes normal to and compute the force F in Neglect gravity and friction, P3.41 In Fig. P3.41 the vane turns the water jet completely ﬁxed. newtons required to hold the plate around. Find an expression for the maximum jet velocity V0 if the maximum possible support force is F O. o Q > 3: Q P3.41 P3.40 ...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

HW_6_problems - §1brs 35500 CEé 304 fﬁd 757 VII-F113...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online