n1 - Stat 5101 Lecture Notes Charles J. Geyer Copyright...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000 by Charles J. Geyer January 16, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.3 Random Variables: Informal Intuition . . . . . . . . . . . 3 1.1.4 Random Variables: Formal Denition . . . . . . . . . . . 3 1.1.5 Functions of Random Variables . . . . . . . . . . . . . . . 7 1.2 Change of Variables . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 General Denition . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Discrete Random Variables . . . . . . . . . . . . . . . . . 9 1.2.3 Continuous Random Variables . . . . . . . . . . . . . . . 12 1.3 Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.1 Discrete Random Vectors . . . . . . . . . . . . . . . . . . 15 1.3.2 Continuous Random Vectors . . . . . . . . . . . . . . . . 15 1.4 The Support of a Random Variable . . . . . . . . . . . . . . . . . 17 1.5 Joint and Marginal Distributions . . . . . . . . . . . . . . . . . . 18 1.6 Multivariable Change of Variables . . . . . . . . . . . . . . . . . 22 1.6.1 The General and Discrete Cases . . . . . . . . . . . . . . 22 1.6.2 Continuous Random Vectors . . . . . . . . . . . . . . . . 22 2 Expectation 31 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . 32 2.3 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.3.1 Axioms for Expectation (Part I) . . . . . . . . . . . . . . 32 2.3.2 Derived Basic Properties . . . . . . . . . . . . . . . . . . . 34 2.3.3 Important Non-Properties . . . . . . . . . . . . . . . . . . 36 2.4 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.1 First Moments and Means . . . . . . . . . . . . . . . . . . 38 2.4.2 Second Moments and Variances . . . . . . . . . . . . . . . 40 2.4.3 Standard Deviations and Standardization . . . . . . . . . 42 2.4.4 Mixed Moments and Covariances . . . . . . . . . . . . . . 43 2.4.5 Exchangeable Random Variables . . . . . . . . . . . . . . 50 2.4.6 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . 50 iii iv Stat 5101 (Geyer) Course Notes 2.5 Probability Theory as Linear Algebra . . . . . . . . . . . . . . . 55 2.5.1 The Vector Space L 1 . . . . . . . . . . . . . . . . . . . . . 56 2.5.2 Two Notions of Linear Functions . . . . . . . . . . . . . . 58 2.5.3 Expectation on Finite Sample Spaces . . . . . . . . . . . 59 2.5.4 Axioms for Expectation (Part II) . . . . . . . . . . . . . . 62 2.5.5 General Discrete Probability Models . . . . . . . . . . . . 64 2.5.6 Continuous Probability Models . . . . . . . . . . . . . . . 66 2.5.7 The Trick of Recognizing a Probability Density . . . . . . ....
View Full Document

This note was uploaded on 02/07/2012 for the course STAT 5102 taught by Professor Staff during the Spring '03 term at Minnesota.

Page1 / 247

n1 - Stat 5101 Lecture Notes Charles J. Geyer Copyright...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online