{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

mid2_sol

# mid2_sol - Problem 1[20 points Diﬂbruutimv Hm function...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Problem 1. [20 points] Diﬂbruutimv Hm function. in] [5 points] ft.r) =(t05(.~iill(t.ml.r)) f7“ = -Sm(§m&ow70) ~ Cospcawﬂ - Secz x _ __ | l _'/ 1W _4’I l p4; 2P4; I P4- "” [5 Paints] fir) = silﬂtuum ‘ 1111:) v _ 1 Jr £9» ) ('(x) = 191n(,+amx-!~X3 Cos (’Eanw .430 \$9; YRMX XJ ’L ‘M's ( r+ 2' F}; M [5 points] j'Lr) : (‘1 _L‘,..’\um. r 3:0 +11)“ X x. [M3 2 {any ﬂmﬂix‘) - - \ P ' 2v 2 9+5 :0— ; Seng“(H)<l)*JCW‘1‘-\‘;:Z ‘0 IJZX’UW‘) ~~-Z|o4S. ?’(X3:‘ (\+'12)Jmmx(§ecz)< ’oﬂﬁc‘fkk3 ‘4. XL “‘3' [5 Points] 1"“ = ¢ _‘=. QM‘RY‘K 2: Mutts) +-‘:—0M(v—+~+H T LAX-H) 4 1 L044) 1‘00 ' 2W3) KN zoom we “’27 3 4 3. v + 3. Problem 2. [10 points] Find dy/dm. (a) [5 points] ms(my) = :ntany 5‘“ (“‘33 (43+ “\$3 2 Jam“; +9L \$e83 iﬁ—‘g . \ d_ {'xs‘muvﬂ —')L\$'Pc?'~; : funtg - ‘3th (n3) 4% {'MV)*V§SYM(K*3) __'—-——‘— f—‘p— - “ 7(SUACXL3)» 398:)» (b) [5 points] (13 + 1):! : (yz + 1);- lg kHz—MW”- 1 9,4614 0 - -— - \ p-h m .4 %L(i‘+0+ '3‘ f; : ,QMhSz-(O-Jr 7t ‘02:“ X 2W 2W} cl‘é : ( 743 ,,_.i__. (@034le ‘33“ '3'; 1’“ 3 '1“ 21% C“; )thm ’ x‘u - AV 5 Jmh‘ktm _ 27:2} ZP-‘s 2v+s w 1P4) Problem 3. [10 paints] 'l‘wn curs. start moving from the same point. Om- tmvels north at 30 mi/h and the other [mu-ls ms! at .m mi/ln. At. what rate is the distance between the ears increasing after one. hour later? k=3or 3'40! ?=£;O 0‘ l clr,}:_'i::i£'—‘—°_ 6W“: 3:44 t" 9° g Problem 4. [10 points] Estimate can(().0()1) using a linear approximation. L94 ‘FCxU: tam/L Tbuz \Ineaw awwx :4 {an ad 0 is {CH a: {Van (X—o) 4 (0:3 ‘ “ ‘ ‘5 10‘“ {Wmtsec'lY ~—~- 7' P)" {'(n: '1 Ho): 0 {:00 it V ‘- 7’ [7+5 Thu/s Problem 5. [10 points] Find the uhsulutc minimum and the absolute maximum of the following function: .c“—6;r2—151'+25 fox-US\$56. 3 'L Lei {00 = X '61 “W”? 3“ 3x1 \'l\o('l\~ table-*QY'S) :3(x_§'3LX—f\) 2 Fig x - .- CVHVJ Vuﬂmes '. a, g. ’ o \ a ' gimm ”\ is n“\ 'IV‘ domain ’ bu? m7 CVKKLM 1 2 4 ﬁg: 53455 49:12:? a P5 L-7§11§ 2‘79: ‘ '3 GMAPD'HA'\\$ . H°\:rz'§ R0: 634-345-439? I t -—°\o-* L? t j Problem 6. [20 points] Let f(:1:) = 1:3 —3:1:2 -—9m+6. (a) [7 points] Find where f is increasing and where f is decreasing. (h) [7 points] Find where f is concave upward and where f is concave downward. Find the inﬂection minus). (c) [6 points] Using the information from parts (a) and (b). sketch the graph of f. v- ’\’ (“7 Rx”: 312'!" "°i = 3CX1'2Y ~33 :“s(x-3')Cx+t7 t P I " ( ‘7. 9%) IX X (-i ’ {0‘770 =1 mweur’vw‘ ‘ 1 V“ xx «(5((3 _ fl,n<° g; d-QCVCQSIWg * 7-4 x73 {’60 >0 '3) THCWO‘STV‘Q ' ' ' ' 1 i7 5 h . \ + O9) 9’? KW t 6X—6 :6( Y-O p .e . . 7. 5 I? s<<k ‘ ("(x) (0 =3 CohCAi/E (\omvxwowds '94 Leis -~ - '7- (A) ”C,<) >0 .2) Commvo Ufﬁbua 1+ ><>L , H 2P“) infler‘l'iov PAM . Qi—Fm} Z ((I'Y') (0 «Com: —i ~3+°\*6= “ {1-9: 33-2._21—¢1.7,+6 = -27-¢L’-'1| (,\ JViS. Problem 7. [10 points] Show that .r > sinm‘ for 0 < .r < 7r/2. L01 €50: 1-3'MX €’cm=t— Cosx --"‘ °> {7+5 Ix’ o<v<l{, 4mm +(033 0 “ ’ ‘ 7' P+5 gfhm £00 TS 171010157713 ob (o. (ham; ==‘> Tncveou'uwg 3946 Problem 8. [10 points] Find the limit. (a) [5 points] lim 111(1 + 3:) 1—4) mm: (h) [5 points] JW ﬁrm a; .L x x900 9 '2, ‘7‘}5 '2 [945. ...
View Full Document

{[ snackBarMessage ]}