hwsol_5

hwsol_5 - Homework Assignment 5(10.4(10.5 Solutions Page...

This preview shows pages 1–3. Sign up to view the full content.

Homework Assignment 5- (10.4)(10.5) - Solutions Page 824: 63, 64*, 65, 66*, 67, 68* 64. Area of the parallelogram with 2 adjacent sides formed by ! ! 2,1 " and ! 1, ! 3 " . ! ! "#! 1, ! 3 "\$ i % j % k % ! 21 0 1 ! 30 \$ 5 k % , the area \$ 5 k % \$ 5. 66. Area of the triangle with vertices ! 0,0,0 " , ! 0, ! " and ! 1, ! 3,0 " . u % \$! 0, ! " and v % \$! 1, ! " , u % # v % \$ i % j % k % 0 ! 21 1 ! \$ 3 i % & j % & 2 k % the area of the triangle \$ 1 2 || u % # v % || \$ 1 2 3 2 & 1 & 2 2 \$ 1 2 14 \$ 1. 87 68. Volume of the parallelepiped with 3 adjacent edges formed by ! 0, ! 1,0 " , ! 0,2, ! 1 " and ! 1,0,2 " . ! 0, ! ! 1 "\$ i % j % k % 0 ! 10 02 ! 1 \$ i % , the volume \$ | ! 0, ! ! 1 " # ! " | \$ | ! 1,0,0 " # ! " | \$ 1 Page 834: 8. the line through P 0, 2, 1 , and Q 2, 0, 2 d % \$ PQ \$! 2, ! " parametric equations: x \$ 2 t y ! 2 \$ ! 2 t z ! 1 \$ t ; symmetric equations: x 2 \$ y ! 2 ! 2 \$ z ! 1 10. P 2, 0, ! 1 , parallel to x \$ ! 3 t , y \$ 2 ! 4 t , z \$ ! 6 d % \$! ! 3, ! 4, 0 " parametric equations : x \$ 2 & 3 t y \$ ! 4 t z \$ ! 1 ; symmetric equations: x ! 2 3 \$ y ! 4 , z \$ ! 1 12. P ! 1, 0, 0 , parallel to x & 1 ! 2 \$ y 3 \$ z ! 2 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
d % \$! ! 2, 3, 1 " parametric equations : x \$ ! 1 ! 2 t y \$ 3 t z \$ t ; symmetric equations: x & 1 ! 2 \$ y 3 \$ z 14. P ! 3, 1, 0 , perpendicular to ! 0, ! 3,1 " and ! 4,2, ! 1 " d % \$! 0, ! "#! ! 1 "\$ i % j % k % 0 ! 31 42 ! 1 \$ i % & 4 j % & 12 k % parametric equations: x \$ ! 3 & t y \$ 1 & 4 t z \$ 12 t ; symmetric equations: x & 3 1 \$ y ! 1 4 \$ z 12 16. P 0, ! 2, 1 , normal to the plane y & 3 z \$ 4 d % \$! 0,1,3 " parametric equations: x \$ 0 y \$ ! 2 & t z \$ 1 & 3 t ; symmetric equations: y & 2 1 \$ z ! 1 3 , x \$ 0 20. L 1 \$ x \$ 1 ! 2 t y \$ 2 t z \$ 5 ! t , L 2 \$ x \$ 3 & 2 s y \$ ! 2 ! 2 s z \$ 6 & s d % 1 \$! ! 2,2, ! 1 " , d % 2 \$! 2, ! 2,1 " , since d % 2 \$ ! d % 1 , these two lines are parallel. 24. L 1 \$ x \$ 3 & t y \$ 3 & 3 t z \$ 4 ! t , L 2 \$ x \$ 2 ! s y \$ 1 ! 2 s z \$ 6 & 2 s d % 1 \$! 1,3, ! 1 " , d % 2 \$! ! 1, ! 2,2 " . Since d % 1 " cd % 2 , these two lines are not parallel. Check to see if two lines intersect: x :3 & t \$ 2 ! s \$ t \$ ! 1 ! s y & 3 t \$ 3 & 3 ! ! 1 ! s " \$ 3 ! 3 ! 3 s \$ ! 3 s \$ 1 ! 2 s , s \$ ! 1, t \$ ! 1 ! ! ! 1 " \$ 0, s \$ ! 1 z :4 ! t \$ 4 ! 0 \$ 4, 6 & 2 ! ! 1 " \$ 6 ! 2 \$ 4 Two lines intersect at where s \$ ! 1 and t \$ 0orat 3, 3, 4 . 28. P ! ! 2,0,3 " , normal vector n % \$! 4,3, ! 2 " equation of the plane: 4 ! x & 2 " & 3 y ! 2 ! z ! 3 " \$ 0 2
32. P ! 1, ! 2,1 " , Q ! 2, ! 1,0 " , R ! 3, ! 2,2 " PQ \$! 1,1, ! 1 " , PR \$! 2,0,1 " , n % \$ PQ # PR \$ i % j % k % 11 ! 1 201 \$ i % ! 3 j % ! 2 k % equation of the plane: ! x ! 1 " ! 3 ! y & 2 " ! 2 ! z ! 1 " \$ 0 36. P ! 3, ! " , parallel to x & 3 y ! 4 z \$ 2 n % \$! 1,3, ! 4 " , the equation of the plane: ! x ! 3 " & 3 ! y & 2 " ! 4 ! z ! 1 " \$ 0 40. P ! 3,0, ! 1 " , perpendicular to the planes x & 2 y ! z \$ 2 and 2 x ! z \$ 1 n % 1 \$!
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 3

hwsol_5 - Homework Assignment 5(10.4(10.5 Solutions Page...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online