Dr. Hackney STA Solutions pg 58

Dr. Hackney STA Solutions pg 58 - 4-14 Solutions Manual for...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4-14 Solutions Manual for Statistical Inference ( = pj-1 pj+1 pn )xj-1 ( )xj+1 ( )xn 1 - pj - p i 1 - pj - p i 1 - pj - p i 1- pi 1 - pj m-xi -xj (m - xj )! pi xi ( ) xi !(m - xi - xj )! 1 - pj . pi Thus Xi |Xj = xj binomial(m - xj , 1-pj ). b. f (xi , xj ) = f (xi |xj )f (xj ) = m! x pxi p j (1 - pj - pi )m-xj -xi . xi !xj !(m - xj - xi )! i j Using this result it can be shown that Xi + Xj binomial(m, pi + pj ). Therefore, Var(Xi + Xj ) = m(pi + pj )(1 - pi - pj ). By Theorem 4.5.6 Var(Xi + Xj ) = Var(Xi ) + Var(Xj ) + 2Cov(Xi , Xj ). Therefore, Cov(Xi , Xj ) = 1 1 [m(pi +pj )(1-pi -pj )-mpi (1-pi )-mpi (1-pi )] = (-2mpi pj ) = -mpi pj . 2 2 4.41 Let a be a constant. Cov(a, X) = E(aX) - EaEX = aEX - aEX = 0. 4.42 XY,Y = Cov(XY, Y ) E(XY )-XY Y EXEY 2 -X Y Y = = , XY Y XY Y XY Y 2 where the last step follows from the independence of X and Y. Now compute 2 XY = E(XY )2 - [E(XY )]2 = EX 2 EY 2 - (EX)2 (EY )2 2 2 2 2 2 2 = (X + 2 )(Y + 2 ) - 2 2 = X Y + X 2 + Y 2 . X Y X Y Y X Therefore, XY,Y = 4.43 Cov(X1 + X2 , X2 + X3 ) = E(X1 + X2 )(X2 + X3 ) - E(X1 + X2 )E(X2 + X3 ) = (42 + 2 ) - 42 = 2 2 2 Cov(X 1 +X 2 )(X 1 -X 2 ) = E(X1 + X2 )(X1 - X2 ) = EX1 - X2 = 0. 2 X (Y +2 )-X 2 Y Y 2 2 (X Y 2 +X 2 Y 2 +Y 1/2 2 ) Y X = X Y 2 (2 Y X +2 Y 2 2 2 X +X Y ) 1/2 . 4.44 Let i = E(Xi ). Then n Var i=1 Xi = = = = Var (X1 + X2 + + Xn ) E [(X 1 + X2 + + Xn ) - (1 + 2 + + n )] E [(X 1 -1 ) + (X 2 -2 ) + + (X n -n )] n 2 2 E(Xi - i )2 + 2 i=1 n 1i<jn E(Xi - i )(Xj - j ) = i=1 VarXi + 2 1i<jn Cov(Xi , Xj ). ...
View Full Document

This note was uploaded on 02/03/2012 for the course STA 1014 taught by Professor Dr.hackney during the Spring '12 term at UNF.

Ask a homework question - tutors are online