Dr. Hackney STA Solutions pg 64

Dr. Hackney STA Solutions pg 64 - 4-20 Solutions Manual for...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 4-20 Solutions Manual for Statistical Inference 4.55 Let X1 , X2 , X3 be independent exponential() random variables, and let Y = max(X1 , X2 , X3 ), the lifetime of the system. Then P (Y y) = P (max(X1 , X2 , X3 ) y) = P (X1 y and X2 y and X3 y) = P (X1 y)P (X2 y)P (X3 y). y 1 -x/ e dx 0 by the independence of X1 , X2 and X3 . Now each probability is P (X1 y) = 1 - e-y/ , so P (Y y) = 1-e-y/ and the pdf is fY (y) = 4.57 a. A1 A-1 = = [ [ 1 1 x1 ] 1 n x=1 i = 3 , e 0 < y < , y>0 y 0. 3 1 - e-y/ 0 n 2 -y/ n = 1 xi , n x=1 1 1 n ( x1 the arithmetic mean. 1 , xn ) n 1 x-1 ]-1 = n x=1 i n n 1 + + the harmonic mean. r0 lim log Ar 1 1 = lim log[ xr ] r r0 n x=1 i 1 1 = lim log[ xr ] = r0 r n x=1 i = 1 n n r0 n lim 1 n n r-1 i=1 rxi n 1 r i=1 xi n = r0 lim 1 n n r i=1 xi log xi n 1 r i=1 xi n n i=1 log xi = i=1 n 1 1 log( xi ). n i=1 1 xi )) = ( i=1 xi ) n , the geometric mean. The term Thus A0 = limr0 Ar = exp( n log( r-1 r-1 d d r r rxi = xi log xi since rxi = dr xi = dr exp(r log xi ) = exp(r log xi ) log xi = xr log xi . i b. (i) if log Ar is nondecreasing then for r r log Ar log Ar , then elog Ar elog Ar . Therefore Ar Ar . Thus Ar is nondecreasing in r. (ii) (iii) d dr log Ar = -1 r2 1 log( n n x=1 xr ) + i 1 r 1 n 1 n n i=1 n rxr-1 i xr i=1 i = 1 r2 r n i=1 n xr log xi i xr i 1 - log( n n x=1 xr ) , i x=1 where we use the identity for rxr-1 showed in a). i r n r i=1 xi log xi n r x=1 xi - log( 1 xr ) n x=1 i n n = log(n) + r n n r i=1 xi log xi n r x=1 xi - log( x=1 xr ) i xr i n = log(n) + i=1 n xr i n i=1 xr i n i=1 xr i n i=1 xr i xr i r log xi - n i=1 xr i n log( x=1 xr ) i = = log(n) + i=1 n (r log xi - log( x=1 n x=1 xr i xr )) i n log(n) - i=1 xr i log( xr i ) = log(n) - i=1 ai log( 1 ). ai ...
View Full Document

This note was uploaded on 02/03/2012 for the course STA 1014 taught by Professor Dr.hackney during the Spring '12 term at UNF.

Ask a homework question - tutors are online