{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# lect24 - INTRO LOGIC DAY 24 Derivations in PL 4 1 EXAM#4...

This preview shows pages 1–3. Sign up to view the full content.

1 1 INTRO LOGIC DAY 24 Derivations in PL 4 2 EXAM #4 Tuesday, in class Office Hours: Mon 12:30 – 2:30 Tue 11:00 – 12:45 363 Bartlett Exams 5, 6 Thu, Dec 15, 8:00-10:00, Mahar Exams are scheduled concurrently; you have two hours to do (as many as) two exams. Exam 4 to be returned Thursday in class

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 3 Exam 4 Topics 6 derivations in Predicate Logic 15 points each, plus 10 free points 1. universal derivation [Exercise Set C] 2. existential-out [Exercise Set D] 3. negation rules [Exercise Set E] 4. multiple quantifiers [Exercise Set F] 5. polyadic quantifiers [Exercise Set G] 6. polyadic quantifiers [Exercise Set G] 4 Exam 4 Appearance INTRO LOGIC EXAM 4 ID # : NAME: Directions: for each of the following, construct a formal derivation of the conclusion from the premise(s). 6 ± 15 pts + 10 free pts. (1) XXXXX (2) SHOW: XXXXX (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (1) XXXXX Pr (1) XXXXX Pr (2) XXXXX Pr (2) SHOW: XXXXX (3) SHOW: XXXXX (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) NAME p 2 (1) XXXXX Pr (1) XXXXX Pr (2) SHOW: XXXXX (2) SHOW: XXXXX (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) RULES FOR PREDICATE LOGIC &I &O ² &O &D DD G G G & H G & H ² ( G & H ) : G & H : G H H –––––– –––––– ––––––––– ] ½ G ] –––––– –––––– G H G ²H ] Y ] G & H H & G ] ½ H ] G ]] I O ² O D (ID) ID G G G H G H ² ( G H ) : G H : G –––––– –––––– ²G ²H ––––––––– ] ² ( G H ) ] ²G G H H G –––––– –––––– ²G ] ½Æ ] : Æ H G ²H ]] ]] o I no such thing (see CD) O ² O CD G I G I ² ( G I ) : G I G ²I –––––––––– ] G ––––––– ––––––– G & ²I ] : I I ²G ]] È I DN ² D G G ²²G : ²G ²G ––––– ––––– ] G –––– ²²G G ] : Æ È ]] ± I no such thing (see UD) ± O ² ± O UD ±Q [ Q ] ² ±Q) : ±Q [ Q ] –––––– –––––––– ] : [ n ]
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 12

lect24 - INTRO LOGIC DAY 24 Derivations in PL 4 1 EXAM#4...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online