lecture_08_f01

# lecture_08_f01 - Statistics 400 - Lecture 8 Completed so...

This preview shows pages 1–7. Sign up to view the full content.

Statistics 400 - Lecture 8

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Completed so far (any material discussed in these sections is fair game): 2.1-2.5 4.1-4.5 5.1-5.8 (READ 5.7) 6.1-6.4; 6.6 7.1-7.2 Today: finish 7.3, 8.1-8.3 READ 7.4!!! Assignment #3: 6.2, 6.6, 6.34, 6.78 (interpret the plot in terms of Normality), 7.20,  7.28, 8.14, 8.22, 8.36 Due: Tuesday, Oct 16
Central Limit Theorem In a random sample (iid sample) from any population with mean      and standard deviation     when n is large, the distribution of the  sample mean     is approximately normal. That is, Thus,  μ σ x n x Z / - =

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Implications So, for random samples, if have enough data, sample mean is  approximately normally distributed. ..even if data not normally  distributed If have enough data, can use the normal distribution to make  probability statements about  x
Example A busy intersection has an average of 2.2 accidents per week with  a standard deviation of 1.4 accidents Suppose you monitor this intersection of a given year, recording the  number of accidents per week. Data takes on integers (0,1,2,. ..) thus distribution of number of  accidents not normal. What is the distribution of the mean number of accidents per week  based on a sample of 52 weeks of data

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/06/2012 for the course STAT 400 taught by Professor Derekbingham during the Fall '01 term at University of Michigan-Dearborn.

### Page1 / 20

lecture_08_f01 - Statistics 400 - Lecture 8 Completed so...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online