{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ID contant v

# ID contant v - :1 I Review Three different situations...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: :1 I. Review Three different situations involving constant velocity are described mathematically/bel6w. ’/ 6 PHYSICS 115 CYCLEZ GROUP SUMMARY PROBLEM JD v 4 )(mmm, 1. (—86 m) = v(l.72 s)+(+100 m) X; «k Adm 2. x = (—5.7 m/s)(300 s)+ (1000 m) 3. (—120.(%\m) = (—5.7‘m/s)(6.8 s) + xiniﬁal ﬂ a) For each equation, write a story or a word p’roKblem’for which thEHequatiOn is a solution. There is more than one possible problem for each situation. b) For each equation, sketch a situation that the mathematical representation might describe. c) For each equation, deterp? the unknown physical quantity. CD Cé-lﬂde II. Skills Practice— more than one object 1. How many data points (minimum) do you need to ﬁnd a best—ﬁt linear function to your data? @ ’7loM "glﬂ". 2/ 2. Graph the following motions of a bicycle and a horse using the same axes: III. Problem Solving the bicycle starts ﬁrst and moves at a steady speed of 2 m/s in the positive x direction. , the horse starts 2 s aﬂer the bicycle and gallops in the same direction at a steady speed of 4 m/s. What physical information can be found using the point of intersection of these two graphs? W5 63/ gm A state trooper in a police car is traveling along the highway at 50 miles per hour (1 mile = laﬁblem). A speeding car traveling at 80 mph overtakes the police car and continues to move ahead at the same speed. The trooper delays 5 seconds to call in the report on the speeding car to the police station. He then immediately accelerates to 100 mph and pursues the Speeder. \$3 Graphical Model : a) b) ® Analytical Model : a) b) c) 390% 3 w. Assume that at t= 0 seconds, the speeding car passes the police car. Draw a position vs. time graph for the speeding car. On the same graph, draw a position vs. time graph for the state trooper. Make the (unreasonable) assumption that the trooper changes velocities instantaneously. Use the graph paper on the next page. I. Based on your graph, at what time, t, does the trooper to catch up with the speeding car? How far do these cars travel in this time interval? 205 2900’“ /2 ’ \ 0 . 2A m i) Using the appropriate analytical methods (mathematical statements), determine: how long it takes the trooper to catch 11 with the speeding car and 2092 how far both cars travel in this time. CCbm Compare these values with Graphical Model (b) above. If they do not agree, decide which model(s) need revision, and then apply the model(s) again. Continue your revisions until you are satisﬁed that both models predict consistent results for both time and distance. 50m; 5 2% . MU” ZOOCM - L"; @003 Uatom kr- 1800 1 e5 mocﬁmE v 4.1.1.1.... 60 55 50 45 4o 35 30 ime (s) 25 T 20 15 10 _ ~ ‘ .. ~ . M _ w _ _ _ _ _ m ‘ . _ _ a _ w 1;, 1 7. ,f- +_ -+,L,,w _ l .,:-.. L . H h # . , _ . _ _ . . _ . (- ﬁ + MI .1 . . ._ _ r f T: _ .w P L H M _ _ T u ‘ _ _ |__ a M r w yw l. {L r114 _ V t _ ‘ + 14 , r _ _ ; ‘ T _ . . 3”! _ l W _ _ W , M1 _ . M w __ _ _ _ . _ [I . m L! J! r n J I .w . if I w‘mf .F 4 L9 L. r IL! v ill _ w _ w . * .v ‘ ~ a ~ M _ . 5|. 1 I |_ L I L! W Jr , 4W! _ . , _ M! , . M y. . \‘ r J7 . Jr L... .L Ir + F LIW ~ w! xwl «..vl ‘m _ .I . 1 w m I11 5 . . _ . _ _ . _ _ _. v. _ r Ly LI W . . _ & (II. ~ r n W w M. 2“ W. 1.. L 151 “ {int “ . .. A _ . _ ﬂ . . . . x. . _ m\ H T I: Lrl ( F _ _ _ 4w 1 . . . _ . Jr “4 4|. 1'4 _ _ . . . _ . _ _ V . W , iﬁ «T T.JJ1+LLIwTM.+’ I- “Y.I.I x.“ ‘l. (:4. _ . _ _ W 7 _ _ . . n ¢ r r “I!” m _ k , w L M, IL L. _ . _ r r _ «r w m . . w w . . _ _ . . . . . E . _ . _ ,1 « r ) 1 y IL w . . l. _ w h ﬁ _ T , _ m _ M .l L _ . _ _ r v w r- k L y ‘ 1 _ {‘1 IT :3 . T yr ‘_ , . . _ m _ . . — . .7 7 .l y _—1 ll ‘ l¢x>| [IL ¢’l 4 3.‘ . . r w . _ _ L w _ _ _ . _ ‘ _ p m 21.. T _ m _ 1 m u T: _ 1w 4 ~ \x . v1. r |{4 _ . . _ . _ n L_ M w _ . _ _. w k w “ T. ¥ . , ‘ rLll: _ M r I . k _ _ ( m r ,_ _ . [I r . ¢ _ ﬂ Y 1 , ¢ . “ M T 7 , +54 1 1 r a w IL- r1 11L L. . . m , . , w L, A g ‘ r + L m . r9 rl I r , b a T l_. L ~ M g r _ . T .V i F . _ w I, “7.1:! a. » i l _ K I 1!. 1711 ﬁ 1%. IIF L Ml [ml _ \ F {El l 4 A _ TJ _ . m l 1 A F . a. . L J x w w 4 - - . .. - r » f 0. ~ 1: L“ r v . L. m m _ _T . r_ . 0* _ ...
View Full Document

{[ snackBarMessage ]}