{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}


L9IntroDiscreteDistributions - MGT 2250 —— Lesson 9...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: , MGT 2250 —— Lesson 9 Introduction to Discrete Probability Distributions June 9, 2011 Definition: A discrete probability distribution describes the distribution of all possible values a discrete random variable can assume and the probability of each of these values occurring. These are defined by a probability function denoted [ch arm which provides the probability for each value of the variable. Each of these probabilities must be between “0” and “l” and they must sum up to “1”. Example: Humungous Motors 3 (:2 3:3 QiflVj £331: [:i-ij Tia} $3.???) efij x (# of cars sold) # of days par): ii 5% W , izii a? 5‘ i t .17 3 we , «3) i x" r ”k L“ I {1% XEQN/g (:33 y w if Expected value: 1:37 isq Ffifl .C}. X <3 Variance and Standard Deviat’ion: EZX) flwflaéééfiw 723 fl MMN EM 1 if? X {45%) *gfitfi fl . 3‘5? g%? at g mlg’ [I/ "K: h Wm WWW” m” “a j?” r “my mm f {1:} M \k XTCM fié‘fi’fii 7)???” KW f if? «3;; fig ‘25,} . \‘2 ggxthw) gkw v ,2“ f ) ya?” i 35‘ MY M?) {3 m ...
View Full Document

{[ snackBarMessage ]}