L11Binomial

# L11Binomial - MGT 2250 Lesson 11 Discrete Probability...

This preview shows pages 1–3. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MGT 2250 _ Lesson 11 Discrete Probability Distributions: Binomial Distribution J 11119 21, 2011 Development of the binomial distribution: Wattm ﬂ 9mg} 42;: A Pogmmif 2: u”; ’Pumzmgggm EUCCMCSJ LIB Pfsiag Na Poﬁnwéfg-m ﬂquﬂéftﬂ raw? \$Ct’g??? ﬁappﬁﬂf r out: ﬂ?” Wﬁﬁr j‘wfmgmME r1 6 V5 55 (35% :33 ’3“ W} K ‘V’i‘? V 33??!)a; mgiééﬁﬂﬂ gﬁgﬁmg m w” xérgjm/M‘ {3’45}; (étjﬂuﬁx {La/f gig/:33”; 93%? g («1 ’5 g #3 W} C} ? M? 2 iv. 6;”: a: ﬁg: {:3 a, f {3: ,__, f < The binomial distributian has the feilowing feur essential characteristics: i) 566546,} <13 [i 324.,“ :QéI/W'YC my T;}Liﬂ“€j ‘2) E; “L 53W“? Q {Q‘Qﬁfjgpﬁ’ mﬁammgg 1%? @Mﬁ ﬂaw-L 3.. S’u-CCHS (5/) {iﬂwwoﬁf ﬁwa 3) ?C# F Fri/Lle if} [email protected]: @aﬁ apo£?ﬁﬂ@i&wx f The bincmiai formuia: {um/134% amt; ¢%ﬂﬁfﬂ%f Th Trig/2:6» .«W _, r _ , _ x h f.” , ; gm 2’: @523; gm” ma; 3: g ’3? 55/ m. r"; I”; “"3? "PM? a W » r* < r m A. f M Raj” “ ,,- If» ' :“Ygg '1‘ «5M 3 % v‘ " «a. w ’ 2: :1 f ‘ ‘“ m g g { My w Lia ; ' ("a " 07%;: "m; ,1/ r“- ; "«" “W: 0"“? (M (2} 42% L 5 awn-9 " ’3 M . , a: M; a ‘ ":3 «gig/£25; w “5‘54 W" N ‘ < f M "3‘ *3 sh w? a (a; «,2, fig, M} 5/3“ {:3} ,_ N} g f ‘1\ if g [i 'w ' .r m,“ / NE a, 11:; . 4+ W 4‘! tr ' s * EL” if 5‘ «1: E if f if g ’° "3 " “l “‘5’ was w , m; aw niémr& W x W»? m? If . it.» c": f! . ' we I it} ‘ ’ g ‘ u” i ' Mi _ t A géiwﬁggf a» z W». m a , “E. fay/J" gyg; {I} it”, A W5 1" 15!; Mi... {W é” ﬁg" y I if“ if Egg; 9 ﬁt; {2 E“? I f . LIV”) I; > / M (r f - a afﬁx, *«WV V M.” V x at, M g NW“ A: s. 1}“ (rm f" i i . y 9 Jiff if _ wwwwww ,. 3 1‘ WWW“ y f w; { w A; mm ‘ // #5: J F j d K5 K” r it?) HMS ﬁtth 06% W?“ M? fig “2;. 63 W: “h i 3%“ Md * “if? (L @722 my; x“? f Example: An electronics store has determined that on average 40% of customers entering the store will make a purchase. Given this: Lg? w r w... %?if k t ’L 2- i Q a) What is the probability that 2 of the next 5 customers entering the % store will make a purchase? l, s“ t 3 3963? “ (5%} ? (in) (it!) {GIL} ) .3 c/ré E. ’ﬂ '1“ ‘ f g 99/ f ; fez . L s v , ‘ b) What is the probability that all 5 of the next 5 customers entering ,1?” the store will make a purchase? C} o t 5" (r (6“? ﬁx 3a.,Wwf” Q l:>(1 (3‘ §F(E:?)£ \E;nget What is the probability that 0 of the next 5 customers ent {rmg‘tmhe store will make a purchase? . r; mx’K 33 f @3t k i “with” f‘hi UZ<§W¢ﬁr #- 6) d) What is the grahability that 1 or more of the next 5 custom *rs entering the store Wili make a purchase? “2‘ Viewihgfﬂeee a», Man... e} “Hist is the expected value et'this distribution. mew—N WM‘K if J’ %m ,, g . m g “new”; 1; ﬁx 2' ’ a r it. Nu ‘ a/j ‘ - . g m? k i} ‘What is the standard tieviation (if this distribution. WW”: m r” M MW W ...
View Full Document

• Summer '08
• Milne
• Probability distribution, Probability theory, Binomial distribution, Discrete probability distribution, Discrete Probability Distributions, Pumzmgggm EUCCMCSJ LIB

{[ snackBarMessage ]}

### Page1 / 3

L11Binomial - MGT 2250 Lesson 11 Discrete Probability...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online