{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# notes6 - ECE 562 Fall 2011 Proper Complex Random Variables...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE 562 Fall 2011 September 14, 2011 Proper Complex Random Variables and Vectors Proper Complex Random Vectors Let Y = Y I + jY Q be a complex random vector. Define the real covariance matrices Σ I = cov [ Y I , Y I ] = E [( Y I- m Y I )( Y I- m Y I ) > ] Σ Q = cov [ Y Q , Y Q ] = E [( Y Q- m Y Q )( Y Q- m Y Q ) > ] Σ IQ = cov [ Y I , Y Q ] = E [( Y I- m Y I )( Y Q- m Y Q ) > ] Σ QI = cov [ Y Q , Y I ] = E [( Y Q- m Y Q )( Y I- m Y I ) > ] (1) Also define the complex covariance matrices Σ = E h ( Y- m Y )( Y- m Y ) † i ˇ Σ = E h ( Y- m Y )( Y- m Y ) > i (2) where Σ and ˇ Σ are, respectively, the covariance and pseudocovariance matrices of Y . Note that Σ = (Σ I + Σ Q ) + j (Σ QI- Σ IQ ) ˇ Σ = (Σ I- Σ Q ) + j (Σ QI + Σ IQ ) (3) Definition 1. Y is said to be a proper complex random vector if pseudocovariance matrix ˇ Σ = 0, i.e. if Σ I = Σ Q and Σ QI =- Σ IQ . (4) Note that for proper complex Y , it follows from (3) that Σ = 2Σ I + j 2Σ QI . (5) The scalar case In the special case where Y is a scalar, denoted by Y , it is clear that Σ QI = E [( Y I- m I )( Y Q...
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

notes6 - ECE 562 Fall 2011 Proper Complex Random Variables...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online