Unformatted text preview: ( ) x p Φ . Now consider the eigenvalue problem for position states in the momentum representation, ˆ ( ) ( ) x x x p x p Φ = Φ . Show that this eigenvalue relation is satisfied if the position operator has the form ˆ x i p ∂ = ∂ h . Further, by operating on an arbitrary wavefunction ( ) p ψ , show that this choice produces the familiar result for the positionmomentum commutator, ˆ ˆ [ , ] x p i = h ....
View
Full
Document
This note was uploaded on 02/08/2012 for the course CHEM 540 taught by Professor Mccall during the Fall '08 term at University of Illinois, Urbana Champaign.
 Fall '08
 Mccall

Click to edit the document details