T-table - Probability Distribution 4.1 TIY 2 page 196...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Probability Distribution 4.1 TIY # 2 page 196 - Modified Number of new sales per day for 100 days Results are for 1 new Employee. (1) Construct relative frequency distribution (= P(x) or the probability distribution) (2) Probability Distribution as a Histogram. Possible x's or outcomes (all values of random variable x) x = Sales per day TIY #5 TIY #6 x # of Days, f xP(x) 16 0.16- -2.40 5.76 0.92 1 19 0.19 0.19 -1.40 1.96 0.37 2 15 0.15 0.30 -0.40 0.16 0.02 3 21 0.21 0.63 0.60 0.36 0.08 4 17 0.17 0.68 1.60 2.56 0.44 5 12 0.12 0.60 2.60 6.76 0.81 Total 100 1.00 2.40 2.64 σ = 1.62 TIY # 2 page 196 - Not Modified Number of new sales per day for 100 days Results are for 1 new Employee. (1) Construct relative frequency distribution (= P(x) or the probability distribution) (2) Probability Distribution as a Histogram. Possible x's or outcomes (all values of random variable x) x = Sales per day TIY#5 TIY #6 x # of Days, f xP(x) 16 0.16- -2.60 6.76 1.08 1 19 0.19 0.19 -1.60 2.56 0.49 2 15 0.15 0.30 -0.60 0.36 0.05 3 21 0.21 0.63 0.40 0.16 0.03 4 9 0.09 0.36 1.40 1.96 0.18 5 10 0.10 0.50 2.40 5.76 0.58 6 8 0.08 0.48 3.40 11.56 0.92 7 2 0.02 0.14 4.40 19.36 0.39 Total 100 1.00 2.60 3.72 σ = 1.93 P(x) =f/ Σf (x-μ) (x-μ) 2 (x-μ) 2 P(x) μ=ΣxP(x) σ 2 =Σ(x-μ) 2 P(x) P(x) =f/ Σf (x-μ) (x-μ) 2 (x-μ) 2 P(x) μ=ΣxP(x) σ 2 =Σ(x-μ) 2 P(x) 1 2 3 4 5 0.00 0.05 0.10 0.15 0.20 0.25 P(x) =f/Σf P(x) =f/Σf x = Number of Sales per day 1 2 3 4 5 6 7 0.00 0.05 0.10 0.15 0.20 0.25 P(x) =f/Σf P(x) =f/Σf x = Number of Sales per day Binomial Distribution 4.2 TIY # 6 page 212 45% of small businesses in US have a website. Randomly select 10 business, Do they have a website? create a probability distribution and graph (histogram). trial: randomly select small business. mean = 5.60 success: small business has a website. variance = 1.12 failure: small business doesn't have a website. std. dev. = 1.06 n = 7 p = 0.8 q = 0.2 Possible x's or outcomes (all values of random variable x) x P(x) Cumul P(x) out of 1,000 0.0000 0.0000 0.0 1 0.0004 0.0004 2 0.0043 0.0047 3 0.0287 0.0333 4 0.1147 0.1480 5 0.2753 0.4233 6 0.3670 0.7903 7 0.2097 1.0000 8 Err:502 Err:502 9 Err:502 Err:502 10 Err:502 Err:502 11 Err:502 Err:502 12 Err:502 Err:502 13 Err:502 Err:502 14 Err:502 Err:502 15 Err:502 Err:502 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 P(x) P(x) x, Number of Small Businesses with Website P n x 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 2 0.980 0.903 0.810 0.723 0.640 0.563 0.490 0.423 0.360 0.303 0.250 0.203 0.160 0.123 0.090 0.063 0.040 0.023 0.010 0.002 2 1 0.020 0.095 0.180 0.255 0.320 0.375 0.420 0.455 0.480 0.495 0.500 0.495 0.480 0.455 0.420 0.375 0.320 0.255 0.180 0.095 2 2 0.000 0.003 0.010 0.023 0.040 0.063 0.090 0.123 0.160 0.203 0.250 0.303 0.360 0.423 0.490 0.563 0.640 0.723 0.810 0.903 3 0.970 0.857 0.729 0.614 0.512 0.422 0.343 0.275 0.216 0.166 0.1250....
View Full Document

This note was uploaded on 02/07/2012 for the course MATH 1225 taught by Professor Raney during the Spring '11 term at Century College.

Page1 / 6

T-table - Probability Distribution 4.1 TIY 2 page 196...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online