tut02 - THE UNIVERSITY OF SYDNEY PURE MATHEMATICS Linear...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: THE UNIVERSITY OF SYDNEY PURE MATHEMATICS Linear Mathematics 2012 Tutorial 2 1. Prove that the set S = braceleftBigparenleftBig x y parenrightBig ∈ R 2 | y = 4 x bracerightBig is a subspace of R 2 . 2. For each of the sets of vectors X ⊂ R 3 below, explicitly describe all of the vectors in the subspace Span( X ) of R 3 . a ) X = { } . b ) X = braceleftBigparenleftBig 1 1 1 parenrightBigbracerightBig . c ) X = braceleftBigparenleftBig 1 1 1 parenrightBig , parenleftBig 2 2 2 parenrightBigbracerightBig . d ) X = braceleftBigparenleftBig 1 1 1 parenrightBig , parenleftBig 1 parenrightBigbracerightBig . e ) X = braceleftBigparenleftBig 1 1 1 parenrightBig , parenleftBig 1 parenrightBig , parenleftBig 1 1 parenrightBigbracerightBig . 3. Recall that F is the vector space of functions from R to R , with the usual operations of addition and scalar multiplication of functions. For each of the following subsets of F , write down two functions that belong to the subset, and determine whether or not the subset is a vector subspace...
View Full Document

This note was uploaded on 02/06/2012 for the course MATH 2061 taught by Professor Notsure during the Three '09 term at University of Sydney.

Ask a homework question - tutors are online