{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

ch 05 - Chapter 5 Time Value of Money Future Value Present...

Info icon This preview shows pages 1–14. Sign up to view the full content.

View Full Document Right Arrow Icon
Time Value of Money Chapter 5 Future Value Present Value Annuities Rates of Return Amortization 5-1
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Time Lines Show the timing of cash flows. Tick marks occur at the end of periods, so  Time 0 is today; Time 1 is the end of the first  period (year, month, etc.) or the beginning of  the second period. CF 0 CF 1 CF 3 CF 2 0 1 2 3 I% 5-2
Image of page 2
Drawing Time Lines 5-3 100 100 100 0 1 2 3 I% 3 year $100 ordinary annuity 100 0 1 2 I% $100 lump sum due in 2 years
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Drawing Time Lines 5-4 100  50  75 0 1 2 3 I% -50 Uneven cash flow stream
Image of page 4
What is the future value (FV) of an initial $100  after 3 years, if I/YR = 10%? Finding the FV of a cash flow or series of  cash flows is called compounding. FV can be solved by using the step-by-step,  financial calculator, and spreadsheet  methods. FV = ? 0 1 2 3 10% 100 5-5
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Solving for FV: The Step-by-Step and Formula Methods After 1 year: FV 1 = PV(1 + I) = $100(1.10) = $110.00 After 2 years: FV 2 = PV(1 + I) = $100(1.10) 2  = $121.00 After 3 years: FV 3 = PV(1 + I) = $100(1.10) 3  = $133.10 After N years (general case): FV N = PV(1 + I) N 5-6
Image of page 6
Solving for FV: The Calculator Method Solves the general FV equation. Requires 4 inputs into calculator, and will solve  for the fifth. (Set to P/YR = 1 and END mode.) 5-7 INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 133.10 -100
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
What is the present value (PV) of $100 due  in 3 years, if I/YR = 10%? Finding the PV of a cash flow or series of cash  flows is called discounting (the reverse of  compounding). The PV shows the value of cash flows in terms  of today’s purchasing power. PV = ? 100 0 1 2 3 10% 5-8
Image of page 8
Solving for PV: The Formula Method Solve the general FV equation for PV: PV = FV N   /(1 + I) N PV = FV 3   /(1 + I) 3 = $100/(1.10) 3 = $75.13 5-9
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Solving for PV: The Calculator Method Solves the general FV equation for PV. Exactly like solving for FV, except we have  different input information and are solving for  a different variable. 5-10 INPUTS OUTPUT N I/YR PMT PV FV 3 10 0 100 -75.13
Image of page 10
Solving for I:  What interest rate would cause  $100 to grow to $125.97 in 3 years? Solves the general FV equation for I. Hard to solve without a financial calculator or  spreadsheet. 5-11 INPUTS OUTPUT N I/YR PMT PV FV 3 8 0 125.97 -100
Image of page 11

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Solving for N:  If sales grow at 20% per year,  how long before sales double? Solves the general FV equation for N. Hard to solve without a financial calculator or  spreadsheet. 5-12 INPUTS OUTPUT N I/YR PMT PV FV 3.8 20 0 2 -1
Image of page 12
What is the difference between an ordinary  annuity and an annuity due?
Image of page 13

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 14
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern