p0438

# p0438 - 4.38. CHAPTER 4, PROBLEM 38 411 4.38 Chapter 4,...

This preview shows page 1. Sign up to view the full content.

4.38. CHAPTER 4, PROBLEM 38 411 4.38 Chapter 4, Problem 38 0 Lx 0 H y Contour C d s = i dx d s = i dx d s = j dy d s = j dy ............... . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................................................................................................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... Figure 4.10: Rectangular contour with differential direction vectors. In general, to evaluate a line integral, we treat the integral as the sum of conventional integrals on each segment of the contour, with the sign determined by the differential distance vector, d s . Hence, referring to Figure 4.10, we see that Γ = 8 L 0 u ( x, 0) · ( i dx )+ 8 H 0 u ( L,y ) · ( j dy ) + 8 L 0 u ( x,H ) · ( i dx 8 H 0 u (0 ,y ) · ( j dy ) = 8 L 0 [ u ( x, 0) u ( )] dx + 8 H 0 [ v ( ) v (0 )] dy Thus, for the given velocity vector,
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online