p1120 - 11.20. CHAPTER 11, PROBLEM 20 23 11.20 Chapter 11,...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 11.20. CHAPTER 11, PROBLEM 20 23 11.20 Chapter 11, Problem 20 For ψ (x, y ) = x2 + 4y 2 the velocity components are u= ∂ψ = 8y, ∂y v=− ∂ψ = −2x ∂x At a stagnation point, we must have u = v = 0. For this condition to hold, necessarily x = y = 0. Thus, there is a single stagnation point at the origin. To determine the streamlines, we set ψ equal to a constant. Then, calling the constant C 2 , 2 2 x + 4y = C 2 x C =⇒ 2 y + C/4 2 =1 As shown in Figure 11.6, this is a family of ellipses with semimajor axis a = C and semiminor axis b = C/4. The vorticity for this flow is ω= ∂v ∂u − = −2 − 8 = −10 = 0 ∂x ∂y Therefore, the flow is rotational. y . . . .. .. ... . ... . . . .. . . ... .............................................. ............................................... . ......... .. .......... ......... . ......... . ........... ........... . ... ....... .... ....... .. . . .. .. ....... ..... ....... ..................................... .................................... ..... .. .. ....... . ........ .... . ....... ....... .... ..... . .. . ......... ......... ..... .. . ... ... . .. ..... .. ..... ... . ... . ..... ... ... ..... .......................... ........................... ... . .. ... . ... . .... .... . .... .. ... .. ... .. .. .. ..... . .. ... .. ..... . .. . .. . . . ........................................................................................................................................... .................................................. ....................................................................................... . . .. . . .. . ... . .. .... .. . . .. . ....... ... ... .. ......... . ............... .... ... ... . .. ... . .. . ......................... ..... ..... ........... . .... ... .... ..... ..... ... ....... ....... . ... .. . ... ..... . ..... ............. ............. .... ............................. ........ ..... .. . .. ...... ...... .............................. ........... ...... ...... ........ . ........ . ....... . ............. ......... ............. . ...................................................... ..................................................... . . . . . . . . . . . • Figure 11.6: Flow on elliptical streamlines. x ...
View Full Document

This note was uploaded on 02/09/2012 for the course AME 309 taught by Professor Phares during the Spring '06 term at USC.

Ask a homework question - tutors are online