p0368 -

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 422 CHAPTER 3. EFFECTS OF GRAVITY ON PRESSURE 3.68 Chapter 3, Problem 68 Problem: Determine the force on the gate AB if the upper layer of fluid has density ρ1 = ρ and the lower layer has density ρ2 = 2ρ. The gate is rectangular and has width 3H out of the page. ......... ......... ......... ......... . ...... ......... .......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ....... ......... .......... ......... ......... .. ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... Air ρ 2ρ ¡ ¡ • ............ .. .... ............ ............ ........ ............ ............ .. .. ............ ............ ............ . ............ ............ .......... ............ ............ ............ ............ ............ ............ ............ ............ ............ ........ .. ............ ............. .... ........... ............ ....... ............ ............ ........ Air ρ H ¡B H ¡ ¡ •A H • ........... ............. ... .. ............ ............ ..... . ............ ............ ............ ............ ............ .. .. ............ ............ .. . ............ ............ ............ ......... H ¡B H ρ ¡ •A H ............. ............. . ... ......... .............. ............. ............. ............. ............. ....... ............................................................................................ ........................................................................... .... ... . . .. . . . . . .................................................................................................................................................................................................... ..... ... ...................................................................................................................................................................................................... .................................................................................................................................................................... ..... ..... .. .......................................................................................................................................................................................... .......... .......... .......... .......... .......... .......... .......... .......... .......... ................................................. ................................................................................................................................................................................... ................................................................ ....................................................................................................................................................................................... ............................................................................................................................................................ ............................................................................................................................................................ Original Problem ¡ Air Problem A = ¡ ¡ • H ¡B H ¡ •A H ............. ............. ............. ............. ............. ............. ............. ............. ........ . .. ..................................................................................................................................................................................................... ....................................................................................................................................................................................................... ........ ....................................................................................................................................................................................................... .......................................................................................... ...... .............................................................................. . ....................................................................................................................................................................................................... + Problem B Solution: To begin, use superposition as illustrated in the figure. For Problem A, the arc’s projection on a vertical plane is a rectangle of height H and width 3H . So, the centroid is located at z = 3 H and A = 3H 2 . Thus, 2 9 FxA = ρg zA = ρgH 3 2 1 9 and FzA = ρgH 2 (3H ) + ρgH 2 (3H ) = ρgH 3 2 2 Similarly, for Problem B, the centroid is located at z = 1 H and A = 3H 2 , wherefore 2 3 FxB = ρg zA = ρgH 3 2 and FzB = ρg 3 12 H (3H ) = ρgH 3 2 2 So, the solution to the original problem is 9 3 Fx = FxA + FxB = ρgH 3 + ρgH 3 = 6ρgH 3 2 2 9 3 Fz = FzA + FzB = ρgH 3 + ρgH 3 = 6ρgH 3 2 2 Therefore, the force vector is F = 6ρgH 3 (i + k) ...
View Full Document

This note was uploaded on 02/09/2012 for the course AME 309 taught by Professor Phares during the Spring '06 term at USC.

Ask a homework question - tutors are online