{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

p0558

# p0558 -

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 5.58. CHAPTER 5, PROBLEM 58 655 5.58 Chapter 5, Problem 58 Problem: The figure depicts incompressible flow through a pipe and nozzle that emits a vertical jet. The flow is steady, irrotational, has density ρ and the only body force is gravity. What is the velocity of the jet at the nozzle exit, Uj ? To what height, zmax , will the jet of fluid rise? Express your answers in terms of ρ, g , h, Ui and pi − pa . Determine the numerical values of Uj and zmax if pi − pa = 60 kPa, h = 1 m, Ui = 4 m/sec and ρ = 1000 kg/m3 . . .. .. .............. . ................... . .......... . . ........... . . ........ . ... ...... . .. .. ........... .. .. .......... .. . .. . ...... . . ......... . ..... . . ......... . ... .. . ...... ......... .. . .. .. .......... ..... .. ... ... ........................ .. .. . ......... .. . .. . .......... ...... .. ............ . .. .. . .............. . ............. . .. . .. . max .. ............... ............... ... . .. ............. ................ ................ . .. . ... .. . . .. . ... . . .. .. . ................ . .................. . .. . . ........................... .......................... . . . . .. . .... . . . . ......... .................. . . . . .......... . . . .. .. . .................. .. .. . . .. .. . . .•. . . .. .................. ................... . .. ..... .................... ..................... .... ... ....................... ......................... . .... .... . .................... ....... .. .......................................................................................................................................................................................................................... ........................................................................................................................................................................................................................... .............................................................................................................................................................................................................................................................................................. . .... . .............. .. . ........................................................................................................................................................................................... .. . .. ... .. .......................................................................................................................................................................................... ............................................................................................................................................... .................. .. . . ........... ................ .... .. . .. .... . g . . .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . z h Uj , pa Ui , pi Solution: Using Bernoulli’s equation, we know that throughout the flow 1 1 p + ρ u · u + ρgz = pi + ρ Ui2 2 2 At the nozzle exit, p = pa , and z = h. So, 1 1 pa + ρ Uj2 + ρgh = pi + ρ Ui2 2 2 Therefore, the initial jet velocity is Uj = 1 1 ρ Uj2 = pi − pa + ρ Ui2 − ρgh 2 2 =⇒ 2 pi − pa + Ui2 − 2gh ρ In the jet, p = pa , and at z = zmax we have u = 0. Hence, 1 pa + ρgzmax = pi + ρ Ui2 2 =⇒ zmax = pi − pa Ui2 + ρg 2g For the given values, Uj = 60000 N/m2 2 1000 kg/m3 +4 m sec 2 − 2 9.807 m2 m (1 m) = 10.79 sec sec and, zmax = 60000 N/m2 1000 kg/m3 9.807 m/sec2 + (4 m/sec)2 2 9.807 m/sec2 = 6.93 m ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern