p06114

p06114 - 908 CHAPTER 6. CONTROL-VOLUME METHOD 6.114 Chapter...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 908 CHAPTER 6. CONTROL-VOLUME METHOD 6.114 Chapter 6, Problem 114 Problem: Near the entrance to a pipe, for laminar viscous flow the velocity distribution changes from uniform (u1 = U ) to parabolic as shown. At the fully-developed outlet section, the velocity varies according to u2 (r) = Umax [1 − 4(r/D)2 ]. Derive a formula for the net resisting frictional force, Fτ , on the pipe section as a function of U , p1 , p2 , D and fluid density, ρ. ..................................................................................................................................................................................................................................................................................... ..................................................................................................................................................................................................................................................................................... ......................... ...... ... ........................................................................................................................................................................................................................................................................................ ........................................................................................................................................................................................................................................................................................ . ............................................................................................................................................................................................................. ...... ................. V ou u1 p1 D r ow u2 p2 x V ou ow ..................................................................................................................................................................................................................................................................................... ... . ... . ... . ... . ... . ... . ... . ................................................................................................................................................................................................................................. ........ . ..................................................................................................................................................................................................................................................................................... .......................................................................................................................................................................................................................................................................................................... ... ... ... ... ... ... ... . ....................................................................................................................................................................................................................................................................................... ................................................................................................................................................................................................................................................. ...... ................. ...................................................................................................................................................................................................................................... ........................................................................................................................................................................................................................................................................... . Solution: Use a stationary control volume that lies entirely within the pipe as shown in the figure. Mass Principle: In general, the mass principle tells us that d dt ρ dV + V S ρ ure · n dS = 0 The flow is incompressible and the control volume’s size is constant. Thus, the instantaneous rate of change of the mass in the control volume vanishes. Then, since ure = u, we have ρ u · n dS = 0 S Now, because n is the outer unit normal, we know that u · n is negative at the inlet and positive at the outlet Thus we have π ρ −U D2 + ρ 4 2π R 0 0 In et Umax 1 − r R 2 rdrdθ = 0 Out et where R = D/2 is pipe radius. Then, introducing the dimensionless variable η = r/R and performing the θ integration, we have 2πρ Umax R2 1 0 1 − η 2 η dη = π ρ U D2 4 6.114. CHAPTER 6, PROBLEM 114 909 Performing the indicated integration, there follows: π η2 η4 ρ Umax D2 − 2 2 4 η =1 = η =0 π ρ UD2 4 π π ρ Umax D2 = ρ UD2 8 4 =⇒ Therefore, the maximum velocity at the outlet is Umax = 2U x-Momentum Principle: Including the viscous term, the x-momentum principle is S ρ u(u · n)dS = −i · S p n dS − Fτ S ρ u(u · n)dS So, the friction force is Fτ = −i · S p n dS − Now, the pressure integral is −i · π π π p n dS = − i · p1 D2 (−i) − i · p2 D2 (i) = (p1 − p2 ) D2 4 4 4 S Inlet Outlet The momentum-flux integral is π ρ u(u · n)dS = (ρ U ) −U D2 + 4 S 2π 0 R 0 2 ρ Umax Inlet 22 rdrdθ Outlet π 2 = − ρ U 2 D2 + 2πρ Umax R2 4 π = − ρ U 2 D2 + 2πρ U 2 D2 4 r 1− R 1 0 1 0 2 1 − η 2 η dη η − 2η 3 + η 5 d η where we use the fact that Umax = 2U and R = D/2 in the last line. So, performing the indicated integration, π η2 η4 η6 ρ u(u · n)dS = − ρ U 2 D2 + 2πρ U 2 D2 − + 4 2 2 6 S η =1 η =0 π 1 π = − ρ U 2 D2 + 2πρ U 2 D2 = ρ U 2 D2 4 6 12 910 CHAPTER 6. CONTROL-VOLUME METHOD Thus, the viscous force is Fτ = π π (p1 − p2 ) D2 − ρ U 2 D2 4 12 which can be rewritten as Fτ = π2 1 D p1 − p2 − ρ U 2 4 3 ...
View Full Document

This note was uploaded on 02/09/2012 for the course AME 309 taught by Professor Phares during the Spring '06 term at USC.

Ask a homework question - tutors are online