Section 2.5 - Nonhomogeneous Equations and Undetermined Coefficients

Section 2.5 - Nonhomogeneous Equations and Undetermined Coefficients

Info iconThis preview shows pages 1–12. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: £802 5: Namtwm needs uafiHon w i We wT/l new/us 6m x . a, "+Ey’+ c ; : a) b) ca real afin'sTanfa- ) 76‘ gy‘fiwfl amt/d5 #2)] _ any =-FO<J l I “Cb? 433—~)an I‘efll Cons cm W 4,1740... 7:010?an 'er 3M Sam): End gnaw] sol/n ya O‘F‘ {’ aééochTe; [mm 8.30% @015 ‘ a. 11+, I+C : ' i ‘7’) PM fw/EW‘KTCWQ“ sol/n 6y? 010 w . ‘hha monk w?en€ou§ CODE a” ;l__+,b i+ " é ené‘cjy éoiln of I" ‘ . W 4y” +‘19;/I+C ‘i i} 93V€n > / < C. > P ' ya 75 (leap/Mafia; £MK0V3 yp 7'3 0b . “Tc—9 “gee; +fl, 75?! a. Sol/fl ,. EDGE: \ ay +by +C/V :: (202—712) +5 ()2 +VP> '+ C (f5???) , ’I l/ I / z: are +r£fC +Cfl+ (ii/P 2(a72 ‘+ byc + C y¢3+ (0%‘9‘laypfi‘ CV») U v A. A‘qufi_g__~_.____ __.. : A , w; <>_.-V_,‘_ 4L U A U A; AL ‘ iii/‘0}! (fut/aqu majiwcaq ' 198+ “ficp‘fidcnfl twig/732C? 1/ c9 0, ow (AS I 0 *LLESS anewafl flown 7yP " Marks wW all age/«xivw‘ e. are “960 hayzeihz fame :5 7:? (x) :3 75‘ a mad” 50/,“ Via 179 {5” manhom. ODE 6' y +‘ff : O r {,(f :(9 g; r : .. 1 ..,_,._.> (x : a Q05 '2x + CZ 5W) HH' L 0» , Defiwchve5 ‘ MW»de are. yuamiflyi, I 1/ a 9) £12 y “if -‘= 3x3 a 0 ya (X) :: CIC056’ZX3‘3‘ CzéTnéLKB ‘ 7'67 M3 : Ax3~+3xz+ Cx +0 .. r; _ muszncll/Lcte all [awer Powers) , @121 bewe a? &&.~TV-a‘z£—TV~QS 6n LHS ' /afo:—3A'XZ+ZB)(+ C _, VP]! '2: I 5 ~é74x+23> * Z7’64X37‘43x306415) 7‘ 44;) + #ng + (6% 4/6) x +(23+<10’):3x3‘ \ Efflex :fibfi COBUQFTCTEW+S on" Fewer;- ‘7‘I4=3 MW: .2 0 ‘ D96? 'Tves Tn é) (Wewr'sec'os(x)) Can Be er (1095*). g. ‘3' +722 :0 ;{Z+F ~Z :0 fl @r—2>(P+l )=0 z r: 33:)-l ' Try 7,, = A sTn(2<)+ [9095‘ M yp’ : Awséd - B51100 y?” = 7457n60 "B C0500 3 64 550 64 ’3w560) + (Aces (x) ~Bgin (a) 464mm 19(05- m) :qugg (-M 9“ 13 -2A) 6%) + (-33 +£57.19) @0506 = Zcoséd «9 ~5A—8=0 4. . _. 6'6: g "’"M‘Trz‘m‘z‘ia: ~ M + r; ‘ 0 ’- ‘ 7? A :1? 7. ==> M) :5); C289” + f? 51710) — 1% @569 y “(/y =30€ M :0 SZX ZX O—Qrziz “ayCT—C‘e +CZ€ : 3x / 5X " a linear cow» T ‘ on hacluéj' Q‘vxcfions <34“ “flit‘i— "Wipes : P 5 w) Pd/VAOM'MJ Tn X ,3 ex medial a” . ‘ cos‘Ckx) or 5mm) 5 ' . 5 . a prX)‘: 1453 x+ 32(55):} Cx e 92(4- Dcosfl" 20 + Egyncwx) + FxcosawO + G xgrnaox) + HXZ¢f9>ODxJ + I’Xlsi‘nflox) +J x2105 000 + szfi [MC/0K) I gememkef” 7n Judge lower Powa‘f TH ' Ex, y a 2/146, : 26" it " H+ i+/§ :CD yr‘Z-ng-l/g/Z' C9 '5’ I“ 2: “3,35 _, ~32! ~5‘ yc’w— Ge +Cz~e X ‘m a “— .3x I/ (.m z o In}; /P«Ce ,‘%fi9=~§Ce;Xg/¢€=?C QC €42; géflfg 1“/ 6C 6‘; X ‘3 Zea} x 0 C Ze-HBX /// */~** *3)“ e 9 v///////// \ yp = 68.321843 Cyan : C (/62063“ 1/ —3;< _ X 7% : ~Zce “3C(/‘3X)€ 3 2 C -é 4.?x -3x J C (‘6’ 7&5»; 3C (F329 63".; / 5&3‘“ : {ZS-3x )8 ’Y Z. So 403 = xuczflx §7h(§x)) C: e +Clxeq+C5XZeu+C-w5(3x)+c " C ‘9 wad baw an ‘t’ 55m32< g u -, X+Cx )c +WSK)+CF G ) "F ' , - ' v 2x a yf (AxfiBx +CX5)e +(Dx+E/( )co5(3x)+(Fx~tC>xz) 5mm) , ‘ v .4. 'N : ' . T‘ . K . '. ‘1- I' ‘ a ‘9 i 29p 51%» We; 6%? tag-n5) we. US€ w i Var?" rem 6F 66 V , 'Th WWW) 7+ Wm 621W; Wk IE}: y”+ :‘tanéO I deh‘Tvcdfi-Vt‘if 0‘10 ) £0635 had" [1er “‘S‘TW'MP \vfiw g; I" 'Z I , \/ (X) H C ) JGP‘éTl/ISW‘ 63y; Q +61 x + do 2C .: _ (X _ a uaneévr‘m/Z‘n? , [Cog‘élPTCTf yme‘t—L ‘9va works “00"” ®n5+dw+*00e%crc’7w$ )mmrcgms ‘ ay"+by’+cy ~46) Trd ‘fiwo [Mad/Fl Mi Yuk) \ {70/ 15:5 (9? “Hive assoc? ~ mega} 3601 5120‘)? H 1. a, (JO/"+610 " LC”? gm gal/14} 43w“ “it (grater e? n) ' Z: nosakoynagfineeufi' Cf” 7n ‘Hflz 100W“ y'/+'P(x)yi+v&éfi)y: F6<>¢ y ,. 1. “go/In 030 y "+Pmymédffixj ‘ " wan/G £01“ My h rvz . “4,66 = u, (x>y,(2<) +uz<20yz (x) ‘ \ £63“ 66*ch “VEUZHCHOM “muz' Q f— MUST wafflfi Ujgdz. — a (Canfmd’ +€rws Tnguwuz yTaIJL [Q Q ’3' Mm W 3 J J ”\ I jLWO 7V1 ‘th/o um/énoadfifi (1,34 l, ‘ We” 8, W: “m + “224. ~- fiL q «ml, 30/7 2ch )1" m,“on y'+ap0<) y :7— #00 M) ‘= y, five/(fig a2 (aha ‘73 . __.‘....._~.mw .‘ - r W a , ’/_L{ l __ >2 . WV/ *0 f‘ "‘{r+‘t=O ~—-3Cr‘-—Z) IO "—9 r=ZJde+Z yew = C,ezx+ C22<8ZK A Wm:- q‘(xfico;(x\+ LEZOASMCZQ '* §Th(. a - - W: I (2553/: 60$ O<>+§7nzé<> 1 l "' —- \ z: Co} (55 t. '> L. v v :— M 7:: -sgdfiggj-FCOSCX) CDfO‘) g. yp Q) s «jm/geccww [email protected] w+ frncxxesw “— wséxjg‘m é) " (Coséd)£h [Sam-WW), ...
View Full Document

This note was uploaded on 02/09/2012 for the course BRT 535 taught by Professor Brown during the Spring '11 term at Iowa State.

Page1 / 12

Section 2.5 - Nonhomogeneous Equations and Undetermined Coefficients

This preview shows document pages 1 - 12. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online