SimplePendulum

# SimplePendulum - Simple Pendulum Spreadsheet Michael...

This preview shows pages 1–2. Sign up to view the full content.

Simple Pendulum Spreadsheet Michael Fowler, University of Virginia We consider the case of a simple pendulum in which the string is replaced by a light rod, which is constrained to move in a vertical circle. In other words, this pendulum can "loop the loop", going over the top, where a string one would slacken. The rod has length L, and is at angle theta relative to vertical y down, so the force on the pendulum in the direction of motion is -mg sin theta. This equals md2s/dt2 = mLd2 theta/dt2. Ld2 theta/dt2 = -gsin theta We cal the angular velocity omega, and the angular acceleration alpha. Click on and change the red numbers below! (See Sheet 2 for a brief discussion of the construction of the table below from the dif erential equation.) L= 1 length of pendulum g= 9.8 gravity theta_init= 0.1 initial position omega_init= 0 initial velocity delta_t= 0.02 time interval in seconds midway time theta omega alpha 0 0.1 0 -0.978367 0.02 0.099804 -0.009784 -0.976459 0.04 0.099218 -0.029313 -0.970743 0.06 0.098244 -0.048728 -0.961238 0.08 0.096884 -0.067952 -0.947983 0.1 0.095146 -0.086912 -0.931027 0.12 0.093036 -0.105533 -0.910434 0.14 0.090561 -0.123741 -0.886283 0.16 0.087731 -0.141467 -0.858665 0.18 0.084559 -0.15864 -0.827687 0.2 0.081055 -0.175194 -0.793467 0.22 0.077233 -0.191063 -0.756136 0.24 0.07311 -0.206186 -0.715837 0.26 0.0687 -0.220503 -0.672727 0.28 0.064021 -0.233957 -0.626973 0.3 0.059091 -0.246497 -0.578751 0.32 0.053929 -0.258072 -0.528249 0.34 0.048556 -0.268637 -0.475666 0.36 0.042993 -0.27815 -0.421206 0.38 0.037262 -0.286574 -0.365082 0.4 0.031384 -0.293876 -0.307517 0.42 0.025384 -0.300026 -0.248735 0.44 0.019284 -0.305001 -0.18897 0.46 0.013108 -0.30878 -0.128457 0.48 0.006881 -0.31135 -0.067436 0.5 0.000627 -0.312698 -0.006147 0.52 -0.005629 -0.312821 0.055165 0.54 -0.011863 -0.311718 0.116259 0.56 -0.018051 -0.309393 0.176894 0.58 -0.024168 -0.305855 0.236828 0.6 -0.030191 -0.301118 0.295825 0.62 -0.036095 -0.295202 0.353653 0.64 -0.041857 -0.288129 0.410083 0.66 -0.047456 -0.279927 0.464894 0.68 -0.052869 -0.270629 0.51787 0.7 -0.058074 -0.260272 0.568805 0.72 -0.063052 -0.248896 0.617499 0.74 -0.067783 -0.236546 0.663763 0.76 -0.072248 -0.22327 0.707417 0.78 -0.076431 -0.209122 0.748291 0.8 -0.080314 -0.194156 0.786229 0.82 -0.083882 -0.178432 0.821084 0.84 -0.087123 -0.16201 0.852722 0.86 -0.090022 -0.144956 0.881022 0.88 -0.092568 -0.127335 0.905876 0.9 -0.094753 -0.109218 0.927188 0.92 -0.096566 -0.090674 0.944879 0.94 -0.098002 -0.071776 0.958881 0.96 -0.099054 -0.052599 0.96914

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 02/09/2012 for the course PHYSICS 152 taught by Professor Michaelfowler during the Fall '07 term at UVA.

### Page1 / 2

SimplePendulum - Simple Pendulum Spreadsheet Michael...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online