EE 3120 test #2

# EE 3120 test #2 - [k-2] u[k] = [k] + 2 [k-1] + 2 [k-2] + 2...

This preview shows pages 1–5. Sign up to view the full content.

Name:_____________________________________     EE 3120           Test #  2 SSN:_______________________________________ Summer  2000 1. Using Partial Fraction Expansion, find f(t), the inverse LaPlace transform  of F(s).  F(s) = 2. Write the difference equation for the following block diagram.  Solve the  system up to k=3 if the input into the systems is the unit impulse  [k]. δ   The initial conditions are:  y(-2) = 2 y(-1) = 1

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. Use discrete time convolution to solve for the output  y[k]  for the following  system.  (A sketch of  h[k]  and  u[k]  may be helpful.)  h[k] = 3 δ [k] +  δ [k-1] -

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: [k-2] u[k] = [k] + 2 [k-1] + 2 [k-2] + 2 [k-3] + 2 [k-4] + 2 [k-5] + . 4. Find the overall transfer function for the block diagram below. 5. Use the s-domain to compute the transfer function of the circuit shown below. Find H(s) and h(t). 6. Use LaPlace transforms to find the output Y(s) for the following second order linear time-invariant lumped differential equation given. The initial conditions are not given. Write the total response Y(s) as a linear combination of the zero-input and zero-state response....
View Full Document

## EE 3120 test #2 - [k-2] u[k] = [k] + 2 [k-1] + 2 [k-2] + 2...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online