Calculus Based Section Complex Harmonic Motion

Calculus Based Section Complex Harmonic Motion - Calculus...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Calculus Based Section Complex Harmonic Motion Up to this point we have only examined the special case in which the net force on an oscillating particle is always proportional to the displacement of the particle. Oftentimes, however, there are other forces in addition to this restoring force, which create more complex oscillations. Though much of the study of this motion lies in the realm of differential equations, we will give at least an introductory treatment to the topic. Resonance The second example of complex harmonic motion we will examine is that of forced oscillations and resonance. Up to this point we have only looked at natural oscillations: cases in which a body is displaced and then released, subject only to natural restoring and frictional forces. In many cases, however, an independent force acts on the system to drive the oscillation. Consider a mass spring system in which the mass oscillates on the spring (as usual) but the wall to which the spring is attached oscillates at a different frequency, as shown below:
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 02/09/2012 for the course PHY PHY2053 taught by Professor Davidjudd during the Fall '10 term at Broward College.

Page1 / 2

Calculus Based Section Complex Harmonic Motion - Calculus...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online