Escape Velocity - Escape Velocity If a projectile is...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Escape Velocity If a projectile is blasted from the earth, it may do one of several things. Most projectiles have a speed such that they soon begin to curve back down towards the earth--this is the parabolic flight described by projectile motion . However it is possible to give a projectile sufficient speed (which is directly proportional to its energy) such that its downward curvature is exactly matched by the curvature of the earth. In this case, the projectile will never reach the ground, and will in fact be in a circular orbit around the earth. If the projectile is launched with even greater energy, it will describe an elliptical path. This is consistent with what we have just seen in Solving the Orbits , where elliptical orbits were seen to have higher energies than circular ones. In fact, because ε = , the greater the eccentricity of the orbit, the greater the energy. shows the differing paths of projectiles with increasing energy.
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 2

Escape Velocity - Escape Velocity If a projectile is...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online