Nonlinear-Systems

Nonlinear-Systems - Nonlinear Systems (.. .and chaos) a...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Nonlinear Systems (.. .and chaos) a brief introduction Tom Carter Computer Science CSU Stanislaus http://csustan.csustan.edu/ tom/Lecture-Notes/Nonlinear-Systems/Nonlinear-Systems.pdf November 7, 2011 1 Our general topics: What are nonlinear systems? 5 A Linear Example (string) 7 Systems of Differential Equations . . . . . . . . . . . . 17 Simple Harmonic Oscillator . . . . . . . . . . . . . . . 21 A Linear Approximation . . . . . . . . . . . . . . . . . . 26 Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 34 Discrete Linear Systems 37 A Discrete Nonlinear System 41 The Logistics Equation (derivation) . . . . . . . . . . 42 The Logistics Equation (analysis) . . . . . . . . . . . . 47 Cobweb Diagrams . . . . . . . . . . . . . . . . . . . . . 57 Bifurcation Diagrams . . . . . . . . . . . . . . . . . . . 94 Universality . . . . . . . . . . . . . . . . . . . . . . . . . 113 2 The Xarkovskii Theorem 119 A Hint of Topics (likely :-) to Come: 122 The Cantor Set . . . . . . . . . . . . . . . . . . . . . . 123 Definition of chaos . . . . . . . . . . . . . . . . . . . . 127 A Chaotic Map . . . . . . . . . . . . . . . . . . . . . . 137 Some other chaotic maps . . . . . . . . . . . . . . . . 141 Julia Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 147 The Mandelbrot Set . . . . . . . . . . . . . . . . . . . . 168 Fixed points, limit sets, stable sets, attractors . . . . . 172 Basins of attraction . . . . . . . . . . . . . . . . . . . . 173 Statistical measures . . . . . . . . . . . . . . . . . . . . 174 Fractal dimensions, related measures . . . . . . . . . . 181 3 Strange attractors . . . . . . . . . . . . . . . . . . . . 191 About fractals . . . . . . . . . . . . . . . . . . . . . . . 191 Continuous systems and flows . . . . . . . . . . . . . . 191 Some history (e.g., Poincar) . . . . . . . . . . . . . . 192 Some other history (e.g., catastrophe theory) . . . . . 193 Poincar sections . . . . . . . . . . . . . . . . . . . . . 193 Entropy and information theory . . . . . . . . . . . . . 193 Diagnostics and control of chaotic systems . . . . . . 194 Other discrete systems e.g.: . . . . . . . . . . . . . . 194 Cellular automata . . . . . . . . . . . . . . . . . . . . 194 Iterated function systems . . . . . . . . . . . . . . . 195 Complex adaptive systems . . . . . . . . . . . . . . . . 195 and complex systems more generally . . . . . . . . . 195 Various other topics . . . . . . . . . . . . . . . . . . . . 196 Appendix 1 197 Appendix 2 200 References 201 4 What are nonlinear systems? Lets start by adding another word to this, and ask the question, "What are nonlinear dynamical systems?" (and well go back to front . . . ) A reasonable thing to say is that a system is a collection of entities that we can treat (for some purpose, in some context) as a unity of interacting parts or elements. At various times we will treat various collections of entities as systems, or subsystems. We may at times ignore certain elements that might otherwise be included. There will alsoelements that might otherwise be included....
View Full Document

Page1 / 207

Nonlinear-Systems - Nonlinear Systems (.. .and chaos) a...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online