# fa - Chapter 13 Fourier Analysis In addition to their...

This preview shows pages 1–3. Sign up to view the full content.

Chapter 13 Fourier Analysis In addition to their inestimable importance in mathematics and its applications, Fourier series also serve as the entry point into the wonderful world of Fourier analy- sis and its wide-ranging extensions and generalizations. An entire industry is devoted to further developing the theory and enlarging the scope of applications of Fourier–inspired methods. New directions in Fourier analysis continue to be discovered and exploited in a broad range of physical, mathematical, engineering, chemical, biological, financial, and other systems. In this chapter, we will concentrate on four of the most important variants: discrete Fourier sums leading to the Fast Fourier Transform (FFT); the modern theory of wavelets; the Fourier transform; and, finally, its cousin, the Laplace transform. In ad- dition, more general types of eigenfunction expansions associated with partial differential equations in higher dimensions will appear in the following chapters. Modern digital media, such as CD’s, DVD’s and MP3’s, are based on discrete data, not continuous functions. One typically samples an analog signal at equally spaced time intervals, and then works exclusively with the resulting discrete (digital) data. The asso- ciated discrete Fourier representation re-expresses the data in terms of sampled complex exponentials; it can, in fact, be handled by finite-dimensional vector space methods, and so, technically, belongs back in the linear algebra portion of this text. However, the insight gained from the classical continuous Fourier theory proves to be essential in understand- ing and analyzing its discrete digital counterpart. An important application of discrete Fourier sums is in signal and image processing. Basic data compression and noise removal algorithms are applied to the sample’s discrete Fourier coefficients, acting on the obser- vation that noise tends to accumulate in the high frequency Fourier modes, while most important features are concentrated at low frequencies. The first Section 13.1 develops the basic Fourier theory in this discrete setting, culminating in the Fast Fourier Transform (FFT), which produces an efficient numerical algorithm for passing between a signal and its discrete Fourier coefficients. One of the inherent limitations of classical Fourier methods, both continuous and discrete, is that they are not well adapted to localized data. (In physics, this lack of localization is the basis of the Heisenberg Uncertainty Principle.) As a result, Fourier-based signal processing algorithms tend to be inaccurate and/or inefficient when confronting highly localized signals or images. In the second section, we introduce the modern theory of wavelets, which is a recent extension of Fourier analysis that more naturally incorporates multiple scales and localization. Wavelets are playing an increasingly dominant role in many modern applications; for instance, the new JPEG digital image compression format is based on wavelets, as are the computerized FBI fingerprint data used in law enforcement 2/25/07 691 c circlecopyrt 2006 Peter J. Olver

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
in the United States.
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern