Partial Differentials Notes_Part_10

# Partial Differentials Notes_Part_10 - two different...

This preview shows pages 1–2. Sign up to view the full content.

two different Frobenius expansions. Usually, this expectation is valid, but there is an important exception, which occurs when the indices differ by an integer. The general result is summarized in the following list: ( i ) If r 2 r 1 is not an integer, then there are two linearly independent solutions hatwide u ( x ) and tildewide u ( x ), each having convergent normalized Frobenius expansions of the form (12.85). ( ii ) If r 1 = r 2 , then there is only one solution hatwide u ( x ) with a normalized Frobenius expansion (12.85). One can construct a second independent solution of the form tildewide u ( x ) = log( x x 0 ) hatwide u ( x ) + v ( x ) , where v ( x ) = summationdisplay n =1 v n ( x x 0 ) n + r 2 (12 . 87) is a convergent Frobenius series that has the same index r 2 = r 1 . ( iii ) Finally, if r 2 = r 1 + k , where k > 0 is a positive integer, then there is a nonzero solution hatwide u ( x ) with a convergent Frobenius expansion corresponding to the smaller index r 1 . The second independent solution tildewide u ( x ) either has a Frobenius series expansion (12.85) with exponent r = r 2 , or an expansion of the logarithmic form (12.87). Thus, in every case, the differential equation has at least one nonzero solution with a convergent Frobenius expansion. If the second independent solution does not have a Frobenius expansion, then it requires an additional logarithmic term of a well-prescribed form. Rather than try to develop the general theory in any more detail here, we will content ourselves with the consideration of a couple of particular examples. Example 12.7. Consider the second order ordinary differential equation d 2 u dx 2 + parenleftbigg 1 x + x 2 parenrightbigg du dx + u = 0 . (12 . 88) We look for series solutions based at x = 0. Note that, upon multiplying by

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern