This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: of the Bessel boundary value problem (12.54–55) are the squares of the roots of the Bessel function of order m . The corresponding eigenfunctions are w m,n ( r ) = J m ( ζ m,n r ) , n = 1 , 2 , 3 , . . ., m = 0 , 1 , 2 , . . ., (12 . 112) defined for 0 ≤ r ≤ 1. Combining (12.112) with the formula (12.53) for the angular com ponents, we conclude that the separable solutions (12.51) to the polar Helmholtz boundary value problem (12.49) are v ,n ( r ) = J ( ζ ,n r ) , v m,n ( r, θ ) = J m ( ζ m,n r ) cos mθ, hatwide v m,n ( r, θ ) = J m ( ζ m,n r ) sin mθ, where m, n = 1 , 2 , 3 , . . . . (12 . 113) These solutions define the normal modes for the unit disk; Figure 12.5 plots the first few of them. The eigenvalues λ ,n are simple, and contribute radially symmetric eigenfunctions, whereas the eigenvalues λ m,n for m > 0 are double, and produce two linearly independent separable eigenfunctions, with trigonometric dependence on the angular variable. Recalling the original ansatz (12.48), we have at last produced the basic separable eigensolutions u ,n ( t, r ) = e − ζ 2 ,n t v ,n ( r ) = e − ζ 2 ,n t J ( ζ ,n r ) , u m,n ( t, r, θ ) = e − ζ 2 m,n t v m,n ( r, θ ) = e − ζ 2 m,n t J m ( ζ m,n r ) cos mθ, m, n = 1 , 2 , 3 , . . . . hatwide u m,n ( t, r, θ ) = e − ζ 2 m,n t hatwide v m,n ( r, θ ) = e − ζ 2 m,n t J m ( ζ m,n r ) sin mθ, (12.114) to the homogeneous Dirichlet boundary value problem for the heat equation on the unit...
View
Full Document
 Fall '10
 Olver
 Differential Equations, Equations, Partial Differential Equations, Boundary value problem, Bessel eigenfunctions, Peter J. Olver

Click to edit the document details