Complex Algebra Review - Complex Algebra Review Dr V Kpuska...

Info icon This preview shows pages 1–9. Sign up to view the full content.

View Full Document Right Arrow Icon
Complex Algebra Review Dr. V. K ë puska
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 10, 2012 Veton K ë puska 2 Complex Algebra Elements Definitions: Note: Real numbers can be thought of as complex numbers with imaginary part equal to zero. C R C Ι R then If Numbers Complex all of Set : Numbers Imaginary all of Set : Numbers Real all of Set : 1 number complex a of form Cartezian + = - jy x z x,y j
Image of page 2
February 10, 2012 Veton K ë puska 3 Complex Algebra Elements   { } { } z of part Imaginary z of part Real Im Re define then we If 0 If 0 If + = = = = = z y z x jy x z x z y jy z x R I
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 10, 2012 Veton K ë puska 4 Euler’s Identity   j e e e e j e j e j e j j j j j j j 2 cos 2 cos sin cos sin cos sin cos θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ - - - - = + = - = + = + =
Image of page 4
February 10, 2012 Veton K ë puska 5 Polar Form of Complex Numbers Magnitude of a complex number z is a generalization of the absolute value function/operator  for real numbers. It is buy definition always non-negative. ( 29 z of argument) (or Angle z arg z of Magnitude radians ] , - ( 0 r θ π π θ θ = = + z r z r re z j R
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 10, 2012 Veton K ë puska 6 Polar Form of Complex Numbers Conversion between polar and rectangular  (Cartesian) forms. For z=0+j0; called “complex zero” one can not define arg(0+j0).  Why? ( 29 ( 29 [ ] ( 29 ( 29 ( 29 ( 29 = + = = = + = + + = + + = = - x y y x r r y r x jy x jr r jy x j r jy x re z j 1 2 2 tan sin cos sin cos sin cos θ θ θ θ θ θ θ θ
Image of page 6
February 10, 2012 Veton K ë puska 7 Geometric Representation of Complex  Numbers. Q1 Q2 Q3 Q4 Im Re z Re{z} Im{z} |z | θ Complex or  Gaussian plane Axis of  Reals Axis of  Imaginaries
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 10, 2012 Veton K ë puska 8 Geometric Representation of Complex  Numbers.
Image of page 8
Image of page 9
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern