Electromechanical Dynamics (Part 1).0019

Electromechanical Dynamics (Part 1).0019 - 9.2.1 Driven and...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Contents 8 Field Description of Magnetic and Electric Forces 8.0 Introduction 8.1 Forces in Magnetic Field Systems 8.2 The Stress Tensor 8.2.1 Stress and Traction 8.2.2 Vector and Tensor Transformations 8.3 Forces in Electric Field Systems 8.4 The Surface Force Density 8.4.1 Magnetic Surface Forces 8.4.2 Electric Surface Forces 8.5 The Magnetization and Polarization Force Densities 8.5.1 Examples with One Degree of Freedom 8.5.2 The Magnetization Force Density 8.5.3 The Stress Tensor 8.5.4 Polarization Force Density and Stress Tensor 8.6 Discussion 9 Simple Elastic Continua 9.0 Introduction 9.1 Longitudinal Motion of a Thin Rod 9.1.1 Wave Propagation Without Dispersion 9.1.2 Electromechanical Coupling at Terminal Pairs 9.1.3 Quasi-statics of Elastic Media 9.2 Transverse Motions of Wires and Membranes
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9.2.1 Driven and Transient Response, Normal Modes 9.2.2 Boundary Conditions and Coupling at Terminal Pairs 9.3 Summary 10 Dynamics of Electromechanical Continua 10.0 Introduction 10.1 Waves and Instabilities in Stationary Media 10.1.1 Waves Without Dispersion 10.1.2 Cutoff or Evanescent Waves 10.1.3 Absolute or Nonconvective Instability 10.1.4 Waves with Damping, Diffusion Waves 10.2 Waves and Instabilities in the Presence of Material Motion 10.2.1 Fast and Slow Waves 10.2.2 Evanescence and Oscillation with Convection 10.2.3 Convective Instability or Wave Amplification 10.2.4 "Resistive Wall" Wave Amplification A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark...
View Full Document

This note was uploaded on 02/10/2012 for the course MECE 4371 taught by Professor Liu during the Fall '11 term at University of Houston.

Ask a homework question - tutors are online