# HW 4 - Meeryu Chung STAT 430 HW 4*Problem 9-1 DATA TOMATO...

This preview shows pages 1–6. Sign up to view the full content.

Meeryu Chung STAT 430 HW 4 ***Problem 9-1; DATA TOMATO; DO LIGHT = 5,10,15; DO WATER = 1,2; DO I = 1 TO 3; INPUT YIELD @; OUTPUT; END; END; END; DROP I; DATALINES; 12 9 8 13 15 14 16 14 12 20 16 16 18 25 20 25 27 29 ; PROC REG DATA=TOMATO; TITLE "Question 9-1"; MODEL YIELD = LIGHT WATER; RUN; Question 9-1 22:14 Wednesday, October 13, 2011 4 The REG Procedure Model: MODEL1 Dependent Variable: YIELD Number of Observations Read 18 Number of Observations Used 18 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 2 537.47222 268.73611 45.28 <.0001 Error 15 89.02778 5.93519 Corrected Total 17 626.50000 Root MSE 2.43622 R-Square 0.8579 Dependent Mean 17.16667 Adj R-Sq 0.8389 Coeff Var 14.19159 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t|

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Intercept 1 -1.83333 2.29689 -0.80 0.4372 LIGHT 1 1.21667 0.14066 8.65 <.0001 WATER 1 4.55556 1.14845 3.97 0.0012 ***Problem 9-2; ***Problem 9-2; DATA TOMATO; DO LIGHT = 5 , 10 , 15 ; DO WATER = 1 TO 2 ; DO I = 1 TO 3 ; IF LIGHT = 5 THEN FIVE_HOURS = 1 ; ELSE IF LIGHT = 10 THEN TEN_HOURS = 2 ; ELSE IF LIGHT = 15 THEN FIFTEEN_HOURS = 3 ; IF WATER = 1 THEN ONE_QUART = 1 ; ELSE IF WATER = 2 THEN TWO_QUARTS = 2 ; INPUT YIELD @; OUTPUT ; END ; END ; END ; DROP I; DATALINES ; 12 9 8 13 15 14 16 14 12 20 16 16 18 25 20 25 27 29 ; PROC REG DATA = TOMATO; TITLE "Problem 9-2" ; MODEL YIELD = LIGHT WATER; RUN ; QUIT ; Problem 9-2 12:31 Thursday, October 14, 2011 4 The REG Procedure Model: MODEL1 Dependent Variable: YIELD Number of Observations Read 18 Number of Observations Used 18 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 2 537.47222 268.73611 45.28 <.0001 Error 15 89.02778 5.93519 Corrected Total 17 626.50000
Root MSE 2.43622 R-Square 0.8579 Dependent Mean 17.16667 Adj R-Sq 0.8389 Coeff Var 14.19159 Parameter Estimates Parameter Standard Variable DF Estimate Error t Value Pr > |t| Intercept 1 -1.83333 2.29689 -0.80 0.4372 LIGHT 1 1.21667 0.14066 8.65 <.0001 WATER 1 4.55556 1.14845 3.97 0.0012 ***Problem 9-3; DATA LIBRARY; INPUT BOOKS ENROLL DEGREE AREA; DATALINES; 4 5 3 20 5 8 3 40 10 40 3 100 1 4 2 50 5 2 1 300 2 8 1 400 7 30 3 40 4 20 2 200 1 10 2 5 1 12 1 100 ; PROC REG DATA=LIBRARY; MODEL BOOKS = ENROLL DEGREE AREA / SELECTION=FORWARD; RUN; Problem 9-3 12:31 Thursday, October 14, 2011 11 The REG Procedure Model: MODEL1 Dependent Variable: BOOKS Number of Observations Read 10 Number of Observations Used 10 Forward Selection: Step 1 Variable ENROLL Entered: R-Square = 0.5602 and C(p) = 6.0588 Analysis of Variance Sum of Mean

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Source DF Squares Square F Value Pr > F Model 1 43.69702 43.69702 10.19 0.0128 Error 8 34.30298 4.28787 Corrected Total 9 78.00000 Parameter Standard Variable Estimate Error Type II SS F Value Pr > F Intercept 1.53094 1.01341 9.78565 2.28 0.1693 ENROLL 0.17763 0.05564 43.69702 10.19 0.0128 Bounds on condition number: 1, 1 ----------------------------------------------------------------------------- -------- Forward Selection: Step 2 Variable DEGREE Entered: R-Square = 0.6370 and C(p) = 5.9529 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 2 49.68736 24.84368 6.14 0.0288 Error 7 28.31264 4.04466 Corrected Total 9 78.00000 Problem 9-3 12:31 Thursday, October 14, 2011 12 The REG Procedure Model: MODEL1 Dependent Variable: BOOKS Forward Selection: Step 2 Parameter Standard Variable Estimate Error Type II SS F Value Pr > F Intercept -0.19936 1.72923 0.05376 0.01 0.9115 ENROLL 0.14147 0.06167 21.28156 5.26 0.0555 DEGREE 1.06332 0.87373 5.99034 1.48 0.2630
Bounds on condition number: 1.3023, 5.2094 ----------------------------------------------------------------------------- -------- Forward Selection: Step 3 Variable AREA Entered: R-Square = 0.7812 and C(p) = 4.0000 Analysis of Variance Sum of Mean Source DF Squares Square F Value Pr > F Model 3 60.93207 20.31069 7.14 0.0209 Error 6 17.06793 2.84465 Corrected Total 9 78.00000 Parameter Standard Variable Estimate Error Type II SS F Value Pr > F Intercept -4.39541 2.56070 8.38127 2.95

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern