CriticalPoints

# CriticalPoints -...

This preview shows pages 1–3. Sign up to view the full content.

Critical Points Warren Weckesser Here we take a look at the critical points of a function. > with(plots): Warning, the name changecoords has been redefined > f := x^3-3*x+y^3-3*y; := f - + - x 3 3 x y 3 3 y Compute the first derivatives. > fx := diff(f,x); := fx - 3 x 2 3 > fy := diff(f,y); := fy - 3 y 2 3 Let Maple find the critical points. > solve({fx=0,fy=0},{x,y}); , , , { } , = x 1 = y 1 { } , = x 1 = y -1 { } , = x -1 = y 1 { } , = x -1 = y -1 Create a contour diagram. > c := [seq(i/2,i=-10. .10)]; := c ± ² ² ³ ´ µ µ , , , , , , , , , , , , , , , , , , , , -5 -9 2 -4 -7 2 -3 -5 2 -2 -3 2 -1 -1 2 0 1 2 1 3 2 2 5 2 3 7 2 4 9 2 5 > contourplot(f,x=-2. .2,y=-2. .2,contours=c,grid=[80,80],color=black, thickness=2); > plot3d(f,x=-2. .2,y=-2.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .2,axes=boxed,style=patchcontour,grid=[60,60 ],contours=c,orientation=[-50,40],shading=zgrayscale); Take a closer look around x=-1, y=1. &gt; contourplot(f,x=-2. .0,y=0. .2,grid=[80,80],contours=c,color=black,t hickness=2); &gt; contourplot(f,x=-1.2. .-0.8,y=0.8. .1.2,grid=[80,80],contours=25,col or=black,thickness=2); Note that as we zoom in on the critical point at (-1,1), the graph looks like a saddle. &gt; plot3d(f,x=-1.2. .-0.8,y=0.8. .1.2,grid=[30,30],shading=zgrayscale,a xes=boxed,orientation=[-35,60]); &gt;...
View Full Document

## CriticalPoints -...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online