{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Ch7-Short-Time_Fourier_Transform_Analysis_and_Synthesis

Ch7-Short-Time_Fourier_Transform_Analysis_and_Synthesis -...

Info icon This preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
Speech Processing Short-Time Fourier Transform Analysis  and Synthesis
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 11, 2012 Veton Këpuska 2 Short-Time Fourier Transform Analysis and  Synthesis Minimum-Phase Synthesis Speech & Audio Signals are varying and can be considered stochastic  signals that carry information. This necessitates short-time analysis since a single Fourier transform  (FT) can not characterize changes in spectral content over time (i.e.,  time-varying formants and harmonics) Discrete-time short-time Fourier transform (STFT) consists of separate FT of  the signal in the neighborhood of that instant. FT in the STFT analysis is replaced by the discrete FT (DFT) Resulting STFT is discrete in both time and frequency. Discrete  STFT vs. Discrete-time  STFT which is continuous in frequency. In linear Prediction and Homomorphic Processing, underlying model of  the source/filter is assumed. This leads to:  Model based analysis/synthesis, also note that Analysis methods presented implicitly both used short time analysis methods  (to be presented). In Short-Time Analysis systems no such restrictions apply.
Image of page 2
February 11, 2012 Veton Këpuska 3 Short-Time Analysis (STFT) Two approaches of STFT are explored: 1. Fourier-transform & 2. Filterbank
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 11, 2012 Veton Këpuska 4 Fourier-Transform View Recall (from Chapter 3): w[n] is a finite-length, symmetrical  sequence (i.e., window) of length N w w[n]   0 for [0, N w -1] w[n] – Analysis window or Analysis Filter ( 29 [ ] [ ] -∞ = - - = m n j e m n w m x n X ϖ ϖ ,
Image of page 4
February 11, 2012 Veton Këpuska 5 Fourier-Transform View x[n] – time-domain signal f n [m]=x[m]w[n-m]  - Denotes short-time section of  x[m] at point n. That is, signal at the frame n. X(n, ϖ ) - Fourier transform of f n [m] of short-time  windowed signal data. Computing the DFT: ( 29 ( 29 k N n X k n X π ϖ ϖ 2 | , , = =
Image of page 5

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 11, 2012 Veton Këpuska 6 Fourier-Transform View Thus X(n,k) is STFT for every  ϖ =(2 π /N)k Frequency sampling interval  = (2 π /N) Frequency sampling factor  = N DFT: ( 29 [ ] [ ] -∞ = - - = m km N j e m n w m x k n X π 2 ,
Image of page 6
February 11, 2012 Veton Këpuska 7 Fourier-Transform View
Image of page 7

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 11, 2012 Veton Këpuska 8 Example 7.1 Let x[n] be a periodic impulse train sequence: Also let w[n] be a triangle of length P: -∞ = - = l lP n n x ] [ ] [ δ P 2P 3P -P 0 n P/2+1 -P/2 P-points n
Image of page 8
February 11, 2012 Veton Këpuska 9 Example 7.1 lP j l m m j l m m j e lP n w e m n w lP m e m n w m x n X ) ( ] [ ) ( ] [ ] [ ) , ( ϖ ϖ ϖ δ ϖ - -∞ = -∞ = - -∞ = -∞ = - - = - - = - = Non-zero only for  m=lP Window located at  lP   & Linear phase - ϖ lP
Image of page 9

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
February 11, 2012 Veton Këpuska 10 Example 7.1 Since windows w[n] do not overlap, |X(n, ϖ )| = constant and  X(n, ϖ ) is linear.
Image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern