{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

231HW4-F10 - 9 999 3<9 5999(93 9 99999999 48 N709 9499MB...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 14
Background image of page 15
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 9 999 3 <9 5999,: (93 9 99999999 48) ) N709) ; 9499MB) r. I~ 99.299999 :— 9— 999/; 29,999} :. 0.007965 M96999) : 99999,) ~ 99999) : 59992.9 , 9.99) -. 999; .29“, 9999‘ 999:9) : 91999) a 9.2799 E979) = 99]? : 259: 9.99" .: 9.35 9/9979 5 9919993": “>919 999 =9 99999 I 6X : 99mg; 3 (08?? (UL) ' 9:“ 89999999 0‘” 9 1 r b' 1 5 999:9 : 99999999)” 2 99999 99 9 99599 5) PUP/2) .~_—. (- 9999’9 3' 9~'P(Xsl’)'9= 9* 0-9957 -'= 09/9939 99) {9'999‘994 09‘ 5 (9995995 799999“ 9?. 999399999? ‘ (i) 9999:“? 9,9 $959999»? 999999. 39993 9911999999“ _ 999:0) : (:9 99°- 9.92% : 9.999 991'} 999999: {/99 flit 4 9909995 , 0.999. 9f 9999:9999 995 .99 993.9th , 999) 9999”] 9.9 2 926.2999 9 9) 999 99999299319 99 0.99/99 9 9.252994 : 0.995599 .9 1". 0‘ 7 g 5L1! 9) ’ ‘ 9.99:9. 99 5 99/9 9‘ 3/3 ‘3 H919“ 99 <3 (WM 50) M? x~ Brno (25 , 0.25) (a) M56) = b{6;25 £725) : 0561! {b} MIKZb) = 502).,25, 025) 1012525 (g) PUP 6) :1" ”735) :I- B(5;25,025): 0.62” ((2) WW) : I— WW : /-— BM 15, NS) = 0.435? <5 (Pmégm 60) M'- m: «x +2.5«2s—m : 625 "m . Mm :: Emir mtg :: 62:5» As: {(20 —_-.~ 62:59152Mfl' ' =6I5w15(2§X0® : 46 XX Hw%*m if 30?, r ‘n ‘ I ‘- ~r 7n .. , ('91,) T THU Qmmrsfflic, &Q5U”U5UT’ST§TL W WT, Ta szQ/flmffl! f» 0. 195. TT ’ Q60 Cf? T 71/sz j) ~.: T ‘ T (13:; mix) lam—WW for Ml“ ; MT: 2%) :— (Tww‘fi f :: {g‘~a.0§)3- 5,05 : 0:04.257 » 3 muss] : Z‘FTTJJ) :» FEM-1T PHr—m NH] 3? 2f fllfi) , 1- “NW _-: (— (5—005)’ : 01425 To) W1 1 7}" = 31%; z 20 .5‘ M; (a) W has MINT/Tc {TWTITWTTL vii/Q (It/1 faf‘afrzfilfif f: 0.25 (WM aw) onQYlth=025T <5) PTW=LT]— ~ ) f: 075 025— 0T055 WW]: W 755 : 0.5% (g) ENE-=71“:— SIT Veg-U] - 1%” 21:35 1 [2 WM“ P3 id ’ y 0 TR} Er! m) PM!) 3* f}, W) “33 '~'~ J4; ”M2 M ‘ 05' {7]1-0 < $ =17“; U'O) : ‘71“ A 2 ms V I =~ f .‘g r , '9“ _. {”45 , ._ ', % m 32(v.3§,x3/J) — Jug; EU) 1:2 ~ J03 05$ 52¢ - 05 [71mg : $4253» 02; .: :Hz 2:15 :I 60 1 hr .. 2 r \ :1 i1 {72‘ m PUB < N J” m) uh _, fps m, doc 05 [2 ] 6/5 :13- (2‘—25*) 0.4575 . % <2 Wrafigm 5) 5w?» " > {m} (UL PPF flit (5) WM) : fjm {£52.- =r JO M (st-26; Q 3 _ q , .3 :009375 [4x-§‘~]0 = was ngw z 05 - I h ._ ’ 1 p” M N {WW “ 14mm ~ jfi 00/7 ( x) rm. Ih Jay; 0:! , 313,0”!376' Hi“? -4, == o.ov575-[{%-31)-<—H§~H : 9,60% ((9) PW—M or was) :1- P{~0,5<~’K56.5) = 1- :2 W?) 05x 2 {v J13: 0,0?375 {lg'OIEJ [if 3: 1 ~ Gigi/5 [ "3,? .,. gag-‘23:” 0M . 3'— I~ OD‘BYSXUHMS €13: 0.6526 bx M if: 3 0 J on y -“ii. "" v 7; f\x 9 ‘p , j‘o “79f. & 2. 3: $200 ”M"; M. f, w J 31:0 “ ”i. p(x§I) W 3: 30 $0? $5 > wiwm ~ [C 23(500‘ :: [x J E,“ Jo 9L fl _, x Q, 23% ff ., 6% Us? Hw4-P5 :Fu~pmw =;,E-QE- 3 ~omfi ) " % % " %-~ j ,. __ r'g‘u. r. W PW W = I~P\M’15> * Ham) 2 1” "ya?“ :— 7b" : 09375 W H236) : 0‘3 j§::0% % %“rz 1?: 2» MM» W) “M Z55..1Q\2 Wm} g fi “ ”if: («-4- “ ”EEC \ A} ) "“25 am: I : K :1 L 1 HM 31W) 0 Warm w _. ‘ 3 5:3». 75:2. m m) = U m) rII ~ J; t 3;. m : "ZLT’MO :éxé. mtg)? 1% : [355“) 3 .L ., ‘ "q: r:?. W Whig“ MW €335 at) f 95- *“ ~ 3* E Mm Mfi~% mm) fwxm) : {—+ 3:0 :2i H—1<X\f):P(><<I)*P(x§~()* P(x<l)—P(x\<~)) = H1) - FM) = %f§—m1~3’—)J» [%T»§~(£,ix("1)+é~] :gng-"fingl 7- @3312 ~ %:O.6875 HOMM - 1—» Mm vs) 31,- NW):l—[%’+%X(4xo.5—°3—53)] = 0.3M For‘ifi‘f/(Z n 3 m : 321%“:W39'H‘ : 33 Wm ; 00‘757544’vtl) Vt/xmmim PM") =0 V’Cfn‘jmg w: Hm) : 0,5 3 23!? 33:" W4; 10L ("1”) =- (Riff) =2 PM >2 3; 20 L3 Lil cuff MM Mid/UM- £510. %’ on by j: 17;" “5&3 :1 L [‘3 j}?! " kxi—BLM [9—,]: gm m MD for 09% ”(E T , W030 lO/WL {63 (b) For 33“! WC): 0 PM W] H56): i Kt U19? ; Vi I“ ”.2 ”g“ {at me j ) «I f, t4 Cgi “’ J if] t3! '3 *[ij‘i] ’ l“ 06') W}, P8 (. M CUM: Mm : 05660 (e) 1>( [‘X—EWI 36x) =~ N IXUE’I S 0.5650) Z ““669"; 5 XS mama} : Hxé o.866<>+1.5) — PU“ R3650 “#5) (1' 9i 13' WWW} I ,2 2.346) , F (-0.65%) :- {14236041 #0 7- 0%245 " V XX Hwab P7 HW4: Q1: Graph Builder :0 n e g e .L Bino 5 0.1 & 3 more vs. x \W 5. 0, 5 ( O .m B 2. mm mm 0, ../D\ .m B. ‘ \I 2 O. 5 /\ O .m B n. 01 6x .m B :déosm AmddvoEm fioéosm 04. O 3. 0 3.0. 0.2 to 4|. O voEm 0 Graph Builder Geo 0.1 & 2 more vs. x 0.1 0.08 0.06 0.04 0.02 Geo(0.1) 0.2 0.15 a: 30.1 . 0'05 Q, g 21 0 mungflfifiimmmm¢¢ E? 9/ 0 8 Graph Builder Legend Poi(O.5) Poi(1) P0|(2) .Poi(4) Poi 0.5 & 3 more vs. x 02: Distributions Bino(5,0.2) Quantiies ' 100.0% maximum 99.5% 97.5% 90.0% 75.0% quartile 50.0% median 25.0% quartile 10.0% 2.5% 0.5% 0.0% minimum Moments Mean Std Dev Std Err Mean Upper 95% Mean Lower 95% Mean N Distributions Geo(0.2) 5 10 1-5 20 25 OOOOOAANCD<PU1 0.973 0.9039292 0.0285848 1.029093 0.916907 1000 Quantiles 100.0% maximum 35 99.5% 25.99 97.5% 18.975 90.0% 11 75.0% quartiie 7 50.0% median 3 25.0% quartile 2 10.0% 1 2.5% 1 0.5% 1 0.0% minimum 1 Moments Mean 4.988 Std Dev 4.5985871 Std Err Mean 0.1454201 Upper 95% Mean 5.2733639 Lower 95% Mean 4.7026361 N 1000 Distributions Poi(2) 01,2345678910' Quantiies 100.0% maximum 99.5% 97.5% 90.0% . 75.0% _ quartile 50.0% median 25.0% quartiie 10.0% 2.5% 0.5% 0.0% minimum Moments COCOANAODémVKO Mean 2.075 Std Dev 1.4837711 Std Err Mean 0.046921 Upper 95% Mean 2.1670749 Lower 95% Mean 1.9829251 N 1000 They are similar to the corresponding probability mass functions I plotted in Question 1. 6. <2. (Problem 321) 0.4 0.3 {(x) O 0.1 0.0 ...
View Full Document

{[ snackBarMessage ]}