231HW4-S10 - H M 3 Q: {Pme 48) M: (a) NW) : 5(2313,0.05)1...

Info iconThis preview shows pages 1–15. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: H M 3 Q: {Pme 48) M: (a) NW) : 5(2313,0.05)1 0872? ‘1’? “>95? = WW5) = V NWH = !— M4,; 25,935) I Home“ W WW) ='~ PM) WW) : s<4izw-os,> — m 2.5,, : 0.7m? ([2,) PORN) 1‘ HMO) ~:. amt} (e) m) = It]? : 25:: MS .: .1135 W} Z R'f'zfi}: xx. I 1‘ (23% 6% = WW : L06??? 8:? <2. K PR)qu W) 50% (00' K” BMW} 0H 1 : bx {’ 3' avg « 7 1:; E: (\F) {34 a» [M PUP/2) 1'— l- mu) 2:. )~'p(xsz‘)”: 1‘ 0.5557 5: W” (C) 251%le 03‘ J’Zfig‘F‘ff MK?" {Iff'fif ~ I r (n Jrf’t 1% 359;?“ m, 2% Aggripf .. We): (:5)- m". M : 0.655,: 7 I {My , (I r 3 NH MEI/t f/m flit 4 610ka , om. if WWW, M5 A , and. m 5 3; ft; [(1‘) MM 0.? z 0.262% ‘ JR) {1% WW (ZS 0.595“ $0152.44 : 07(551} I~{'»€H:« N <3 (WM 50) Ma XNBYHOUM 0.25) ‘ (a) W56) = b{6;25, £125) : 0.561! m mzb) 2 Mia; 25, 0.25) = 0.0325 (0 ‘PW 6) = I— NNS) : I- 5(5; 25, 025) : 0.5217 ((2) 9W5} : l—P(x$é):/~ B/é;15,0-25)= 0.435? <£+ (Mm 5! ) <5 (Pmégm 60) M'- wu: z‘x +2.5«2s—m : 625 "m ’ Mm :: €162.5- Him :: 62:5» As: {(20 2-: (72.59152(Rf)' ' =6I5w15(2§X0® : 46 XX Hw%*m if >9 305, ([email protected] mwafnafi‘ ) (a; PiYiifl a-({—p)??f fir a£lz* I ; W: 2%) :— Hwy)“. f :: (Magi) 3- a05 : 0:04.257 r 3 ; P£I$T651 : 2iP<T:J) : FET={]'fP[T:Z]T'P[T=3] 3? 2f , 1- {my} _-: (— (5—005)’ : 01425 m “filzj}’=-§%-:2o 5‘ 303-, (a) w M; [WNW WSWMWL vii/L (It/1 jammy f: 0.25 <w~amm) mmf=a$) %) Hw=%j= H~)“~f=omfi.m5: mmfi PW?“ = (I'W = 0.754 : 05W V i _ I ., my EU}: f—-m5~% _«~= PL _ mms VUJUJ f; -5025; a, [Z r r- ‘ Z " .r h r v ('91,) ME gi’éaifimifl Mama W Wt; fie zQ/{Imffli f» 0. :95. WW“ P3 M l y 0 W1 F, m) PM!) 3* f}, W) “33 '~'~ J4; “H M ‘ 05' ELL-o < S =17“; U'O) : ‘71“ K 2 ms V I =~ f .‘g r r 'V _. {‘45 , ._ ', % m 3,(v.3§,,x3/J) — EU) «~— Jafi 05$ 52¢ —- 0.5 [713305 : $4253» 02; .: $2 2:15 1': 60 1 hr .. 2 r \ :1 i1 {72‘ m PUB < N J” m) uh 9 fps m, doc 05 [2 j W :13- (2‘—25*) 0.4575 . % <2 Wrafigm 5) 5w?» " > {m} (UL PPF flit (5) WM) : fjm) {£52.- =r JO (My a _ Q , .3 :ooms [4x-§‘~]0 = was ngw z 05 - I w ’ 5,, 1 W N {WW “ 14mm ~ jfi 0.0%73M'u) .32 r .. n I; fi’ M 1 ' i x .. MGM [¢}J\“"3‘”J-( ~ o.0YflS-[H-§)-<*“r+:?] 1 96M ((9) PW—M or N 9,5) :1- P{~0,5<~K6‘6.5) = m) M : {w m: 0,0353% (m?) «3:5 :2 3 ~ L w- ' 0‘14 1 0 v, J~'o,ov375x2x[m.s ~ 33-] : 0.63285 —~ g... M iii 0 1 w -49“. ., 35 .2‘ ”7~ [0 “‘7” \. a” 2. .3: $.10“ ., “wt”; :2 b 4.31:0 L W. $2.2m; J “r— a m : Mm 200} b :2 0 2W flu) JAE.) V) at c: f 100 zgtfim N m imb‘ .. J : 1 L w “j; :2 E, 2:} 2 m _, 1“ J9 3 2a» lef' Pfi :Fu~pmw =;,E-QE- 3 “Dmf ) " % % " %-~ j ,. __ r'g‘u. r. W PW W = I~P\M’15> * Maw) '2 I” :— 7b" : 09375 W H236) : 0‘3 j§::0% % %“rz 1?: 2» MM» W) “M Z55..1Q\2 Wm} g fi “ {~4- “ x A} ) 325 aux: I : K I: L 1 HM ix) 0 (Wk/rum w _. ‘ 3 3:3». 75:2. m m) = U m) M ~ J; t 3;. m : flflm 14x1? NW" : {3553 v ‘L n ‘ r:?. W Whig“ MW 6335 at) f 95- *“ ~ 3* E Mm Mfi~% f. < -— ' i'o 2:1. HM) ~— PM») - 7+ 3; z wmxu):r(><<z)—J><x§~1)~Hxsiwwxm) = F(1)-F(—l) = «E figwfi—H» [3' <4><<~u+ .. l2 *1 ,L , gtl ', g , 'EZM“ 3M3 3- - 32 '— ~,—,§~~:o.6575 “ " "' r ._ 7‘ !»3 0,53 P(0.5<X3 : I“ N/({\ “.G) 3- {" ) 4‘I'EETEX<4XO.S" 3' = 0.3M Paris!” q I! 024 {'3’ f ,‘r g: E. z i 'h 2. :_ 00v575 (4'5) Vt/xmmim F‘fx) =0 V’Cfrijmg ja/c HOE) : 0:5 ‘ i» high} a .. My?) 2. (szvfi) =2 :ch:"~lz) =10 ~ Mun/73.} w-Jéiizo- win/T2 v2 PM > 2 3; 20 L3 Lil cuff MM Mid/UM- £510. %’ on k j: 9&3 :1 L [‘3 j}?! " kxE—BLM [9—,]: gm m MD far “M “(E T / WASP/0 lO/WL {63 (b) For 33“! ms): 0 PM W] H55): i w m9? ; Vi I“ m2 1‘ {at me j ) «I f, “’ J t3! '3 *[ij‘i] ’ l“ 06') W}, P8 (. M CUM: Mm : 05660 (e) 1>( [‘X—EWI 36x) =~ N IXUE’I S 0.5650) Z M35669”; 5 XS mam-7:}; : Hm o.866<>+1.5) — PU“ R3650 “#5) (1' 9i 13' cflmhmfi} I ,2 “2.346) ' F (-0.65%) :- {14236041 so 7- 0%245 " V XX Hwab P7 HW4: Q1: Graph Builder :0 n e g e .L Bino 5 0.1 & 3 more vs. x \W 5. 0, 5 ( O .m B 2. mm mm 0, ../D\ .m B. ‘ \I 2 O. 5 /\ O .m B n. 01 6x .m B :déosm AmddvoEm fioéosm 04. O 3. 0 3.0. 0.2 LD 4|. O voEm 0 Graph Builder Geo 0.1 & 2 more vs. x 0.1 0.08 0.06 0.04 0.02 Geo(0.1) 0.2 0.15 a? 30.1 I 0'05 Q, 21 0 ‘fiflmmmmm¢¢ E? 9/ 0 8 Graph Builder Legend Poi(O.5) Poi(1) P0|(2) Poi(4) Poi 0.5 & 3 more vs. x 02: Distributions Bino(5,0.2) Quantiies ' 100.0% maximum 99.5% 97.5% 90.0% 75.0% quartile 50.0% median 25.0% quartile 10.0% 2.5% 0.5% 0.0% minimum Moments Mean Std Dev Std Err Mean Upper 95% Mean Lower 95% Mean N Distributions Geo(0.2) 5 10 1-5 20 25 OOOOOAANCD<PU1 0.973 0.9039292 0.0285848 1.029093 0.916907 1000 Quantiles 100.0% maximum 35 99.5% 25.99 97.5% 18.975 90.0% 11 75.0% quartile 7 50.0% median 3 25.0% quartile 2 10.0% 1 2.5% 1 0.5% 1 0.0% minimum 1 Moments Mean 4.988 Std Dev 4.5985871 Std Err Mean 0.1454201 Upper 95% Mean 5.2733639 Lower 95% Mean 4.7026361 N 1000 Distributions Poi(2) 01,2345678910' Quantiles 100.0% maximum 99.5% 97.5% 90.0% . 75.0% _ quartile 50.0% median 25.0% quartile 10.0% 2.5% 0.5% 0.0% minimum Moments COCOANAODémVKO Mean 2.075 Std Dev 1.4837711 Std Err Mean 0.046921 Upper 95% Mean 2.1670749 Lower 95% Mean 1.9829251 N 1000 They are similar to the corresponding probability mass functions I plotted in Question 1. 6. <2. (Problem 321) 0.4 0.3 {(x) O 0.1 0.0 ...
View Full Document

This note was uploaded on 02/11/2012 for the course STAT 231 taught by Professor Staff during the Fall '08 term at Iowa State.

Page1 / 15

231HW4-S10 - H M 3 Q: {Pme 48) M: (a) NW) : 5(2313,0.05)1...

This preview shows document pages 1 - 15. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online